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Synopsis 
This paper exposes a model of bus-stop location and frequency optimization in land public transport. 
The aim of the problem-solving project is to minimize the total social cost involved in the operation of the 
transport system, including the costs of the provision of services (incurred by the operators), the travel costs 
(incurred by the users of the system) and the external costs incurred by the users of other transport means 
(as for example, car users) as well as the cost derived from the construction of stops. 
The Optimization Problem is approached as a bi-level-type problem of full mathematical programming. We 
are defining a total cost function of the system which must be minimized, subject to technological restrictions, 
at the upper level, while at the lower level, a behaviour model for the system users is defined. Route choice 
on road network is made by private transport users according to Wardrop’s first principle, in an attempt to 
minimize individual costs. As far as public transport users are concerned, it is also assumed that they choose 
the route which minimizes their total individual travel costs on the service network. 
Given the difficulties that exist in finding a unique solution to this problem, a heuristic algorithm is proposed 
in order to provide adequate solutions, without necessarily guaranteeing the uniqueness of those solutions. 



A model of urban public transport system 
design 

 
It is known that the problem of design of urban public transport system is the most difficult to be solved in the 
transport sector. The international experience in various cities shows that public transport is gradually losing 
share to private modes. It is for this reason that researchers have made a big effort in recent years to focus 
on the problem of design. There are specific studies focused on improving frequency (Furth and Wilson, 
1981; Kocur and Hendrickson, 1986; Ceder, 1994; Constantin and Florian, 1995), while others are 
particularly focused on improving of the configuration of routes (Newell, 1979; Ceder and Wilson, 1986).  
 
These studies, although adequate, propose optimization models of only one level and do not often cover 
adequately the interaction existing between supply and demand  (Ziyou Gao, Huijun Sun, Lian Long Shan, 
2004) 
 
Demand is generally connected with the private sector while supply is related to the public one. Demand 
adjusts its activities to the existing supply with the aim of minimizing travel time, while supply seeks to 
maximize the system’s performances. In line with this, it is necessary to model both sectors at the same 
time. 
 
The problem of urban public transport system design can be approached as a two-level non-cooperative 
game (Stackelberg Game). In this game there is a planner, who determines the characteristics of the 
transport system, and the system users, who tend to minimize the generalized travel cost, providing a flow 
pattern for this system. The generalized travel cost includes all the elements considered by an individual 
when traveling, as for example the time it takes them to reach the system walking, waiting time, travel time of 
the vehicle, comfort of the journey, fares, safety, etc. 
 
Initially, at the first stage, the planner defines the topological structure of services, establishing the layouts 
and public transport technologies to be used at each service (Physical Design Problem). At a second stage, 
the planner determines the operational characteristics of the system, as for example the frequency and the 
optimal capacity of each service (Operational Design Problem). At the second level we find the system 
users, who, in connection with this service structure, generate a flow profile of the transport services 
proposed. This second level is normally modeled through a behavior model which is useful for predicting the 
assignment of users to the analyzed public transport structure. (Noranbuena I.J., 2002) 
 
There is at present a varied bibliography on transport network design using bi-level programming techniques 
(Yang and Michael, 1998; Yang, 1997; Wong and Yang, 1997; Yang and Bell, 1997) 
 
The study outlined here applies a bi-level optimization model with the aim of estimating the optimal service 
frequencies provided thus obtaining the optimal location of bus stops. 
 
THE PROBLEM OF BUS-STOP LOCATION AND FREQUENCY OPTIMIZATION IN 
PUBLIC TRANSPORT 
The problem of bus-stop location and Frequency Optimization in Public Transport Networks can be posed as 
a bi-level mathematical programming problem. 
 
A solution must be found to the minimization of the total social cost involved in the operation of a transport 
system, including the costs of providing the services, incurred by operators, the travel costs, incurred by the 
system users, and the external costs, incurred by the users of other transport means (for example, car users) 
and those incurred by the general population of the city (for example, pollution). 
 
The main constraints of the problem are that flows are generated by the decisions made by the users in 
order to satisfy their travel needs, given a specific public transport system, in other words, a service supply 
with its particular routes and operation frequencies.  
 
A discrete approach is used in the location of bus stops and a choice of potential locations for these stops is 
studied. We have chosen this kind of approach because the results obtained are as near as possible to real 
life, as it is known that not all points of a public transport route are appropriate to locate bus stops, either due 
to lack of space or regulatory restrictions which would be very difficult to be modeled in the event of 
considering a continuous approach. 
 



The frequency optimization variable is regarded as continuous. The use of a continuous programming 
approach does not constitute in practice a significant obstacle to the representation of the real phenomenon 
which is to be modeled, but, on the contrary, the hypothesis that the variables which represent the 
frequencies of public transport services are continuous, leads to important algorithmic and computational 
advantages (Fernández y Elton, 1996). The computational requirements of the full programming approach 
make this highly inefficient and of little application in full-size cases. 
 
In general terms, if a continuous formulation is used in the decision variables of the problem, it will be 
possible to obtain an optimal discrete solution straight from the continuous solution, by using easy 
approximation rules. According to the results obtained in Fernández and Elton (1996), once the related 
approximations were made, the solutions obtained in most of the cases analyzed in the problem of design of 
infrastructure networks, under both approaches, were identical. 
 
PROPOSED MODEL 
As mentioned above, the problem of bus-stop location and Frequency Optimization in Public Transport 
Networks can be posed as a bi-level mathematical programming problem. At the upper level, we have 
minimized the total social cost involved in the operation of the transport system. Special attention is given to 
the total travel cost (CTV) and the operation cost - dependant on the location and (n) number of bus stops 
and on the service frequency of each route (fBlB) -  as well as the cost of construction of stops - dependant on 
the number of stops that will be needed. All of these being subject to capacity restrictions in buses (2) and 
stations (3). 
 
Upper level: 
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Where:  
 
CTV = Total travel costs  
CO = Operation costs 
CC = Costs of construction of stops 

lf  = Frequency of line l. 

lNTP  = Total number of passengers in the busiest section of line l in the time range studied. 

'kTO  = Occupation time of station  expressed in seconds. 'k
 
At the lower level, we consider a model of assignment to public transport. The model of equilibrium 
assignment in public transport networks used in the formulation, requires the definition of a more complex 
network represented by graph ' ( , )G N S= , where S is the set of network links which comprises route 
sections and access links. A route section is a portion of a route between two consecutive transfer nodes, 
which has a set of lines equally attractive for the associated users (see De Cea and Fernández, 1993). 
 
Lower Level:                                                                                               
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Where: 
W: Set of origin-destination pairs O-D. 
w: Element of set W, in which , with i, j centroids. ( , )w i j=
TBwB:       Total number of journeys between the O-D w pair for public transport users. 
l: Rate of a public transport line. 
R: Set of routes available for public transport users. 
r: Rate of a public transport route. 
RBwB: Set of public transport routes associated with the O-D w pair. 

rh : Passenger flow in public transport on route r. 
s:         Rate of a route section in public transport. 
S:         Set of route sections available for public transport users. 
cBsB :       Travel cost for public transport users on route section s. 
δBsrB :     Element of the route - route section incidence matrix: it takes value 1 if route r passes by s and 0 in 
the remaining cases. 
VsB: Passenger flow in route section s. B

vP

l
PBsB: Flow of passengers using line l in route section s. 

fBlB: Service frequency in line l. 
fBsB: Total frequency in route section s. 
 
In order to represent the fact that travelers select a subset of lines  (subset of attractive lines) to travel from 
A to B, taking into account at the same time the capacity restriction for vehicles, the above situation is 
modeled as follows:  
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Figure 1: Links of Public Transport Network ' ( , )G N S=  

 
The first public transport network, , represents the set of fast lines including the set of lines which 
minimize the generalized travel time (cost) without considering the capacity restriction for vehicles, in other 
words, it is the set of common lines determined by the Chriqui algorithm (see Chriqui, 1974, and Chriqui and 
Robillard, 1975). The second public transport arch, , represents the set of slow lines, . 
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Consequently, there may be more than one link in the public transport network (route section) by joining a 
pair of given nodes. The first link, as mentioned above, contains the “fastest” lines of all the routes which join 
this pair of nodes (set of common lines). If certain lines have not been included within this set, the Chriqui 
algorithm is again applied and a second link, parallel to the previous one, which comprises the new set of 
common lines, is formed. The process continues until all lines joining the pair of nodes are associated to 
some route section. As the route sections which include the “fastest” lines get congested, the route sections 



including the “slowest” lines begin to attract users. This assumption, while separating the assignment 
problem from the problem of selection of common lines, thus simplifying the equilibrium problem at  user 
level, simplifies the problem formulation for frequency optimization. Really it is only when line frequencies are 
known, that it is possible to determine which services exactly belong to the set of “fast lines” and to the 
“slowest lines”. In any case, the solution algorithm proposed does not take the network as fully defined and 
whenever a vector of frequencies is obtained at the upper level, the lines which make up each one of the 
route sections of the public transport network are determined. Only after this is completed can we proceed to 
carry out the corresponding assignment. 
 
BASIC ASSUMPTIONS 
The selection of route is made by public transport users according to Wardrop’s first principle with the aim of 
maximizing individual utilities (by minimizing total travel cost). 
It is assumed that public transport users may choose the route that minimizes their total travel cost (walking 
time + fare + waiting time + in bus travel time). It is also assumed that the public transport system has a 
limited capacity and therefore, the travel cost increases as passenger flow increases. Thus, as some routes 
become congested, passengers will use alternative routes that are attractive to them. 
 
The cost functions for the route sections that make up the public transport network are as follows: 
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where st  is travel time on the vehicle plus the fare, dBsB is the total frequency in the route section s, α and β 
are calibration parameters, KBsB is the capacity in the route section s, VBsB is the total number of passengers in 
the route section s and sV% is the flow that competes for the same capacity. ϕBsB function must be such that cBsB 
is strictly monotonous in VBs.B BPR-type functions are normally used: 
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It can be observed that the cost functions in the route sections of the public transport network are not 
separable. The cost function sc of a route section of public transport depends on the passenger flow in other 
route sections and not just its own flow, as well as on the flow of private transport vehicles in the travel links 
concerned. 
 
USERS’ BEHAVIOR MODELS: AN OVERVIEW 
The various algorithms that solve the Problem of Design of Public Transport Networks must interact with the 
system users’ behavior models with the aim of properly assessing each one of the solutions analyzed by 
the design algorithm.  
 
Behavior models enable us to simulate the travel decisions made by the transport system users and to 
determine the equilibrium flows (passengers and vehicles) on the networks concerned. Depending on the 
type of analysis to be carried out and the hypotheses made about the impact that the modification in service 
frequency would have on modal distribution and share of journeys, a variety of behavior models will be 
necessary. 
 
In fact, when making a medium-long-term analysis, it is necessary to assume that the design of the public 
transport network (in general, layouts and optimal frequencies) may affect users’ decisions at different levels 
i.e.: destination, mode and route choices. In line with this, the equilibrium flows must be determined by using 
a simultaneous distribution-modal share-assignment equilibrium model.  
 
If this type of analysis requires considering the transport mode and route choices, then, the behavior model 
to be used is a simultaneous modal share-assignment equilibrium model so that the effects of redesigning 
the public transport system are internalized within those choices. In this case, we make the distribution 
among the public transport modes as a result of a process of modal choice (it is assumed that frequency 
changes do not affect either travel distribution or the modal share between public and private transport). 
 



If it is assumed in the analysis that no changes occur either in travel distribution or in modal share as a 
consequence of the redesign of the public transport system and, subsequently, the matrices of the journeys 
of the diverse analyzed models remain fixed, equilibrium flows are determined by using an equilibrium 
allocation model that will be called bimodal, when considering private transport-public transport interactions, 
or multimodal, when only one public transport network with multiple modes is considered. 
 
As regards public transport, a matrix of total journeys (pure and combined modes) allocated on a multimodal 
network of services, is used. Therefore, travel distribution among the different modes is determined from the 
allocation of the matrix on that network. 
 
The equilibrium allocation model in public transport networks used when formulating the frequency 
optimization problem, corresponds to a model proposed by De Cea and Fernández (1993). This model 
enables us to solve the problem of allocation to congested public transport networks. Congestion is 
associated with waiting that users have to undergo at stations when the number of journeys approximates 
the capacity of the system 
 
The model assumes that users choose - among all the route choices connecting a specific pair of nodes on 
the public transport network - that route which minimizes their total travel time (cost) (fare + travel time on the 
vehicle + waiting time + walking time). 
 
On the other hand, it is assumed that the system has a limited capacity so that, the greater the number of 
system users the greater travel times become. It is assumed that the congestion phenomenon occurs at the 
stations, as travelers must wait depending on the total capacity of all the lines and on the number of 
passengers who wish to use those lines to travel. 
 
Once a passenger boards a vehicle at the station, travel time on that vehicle will only be determined by the 
congestion level that may exist on the road network (flow of private transport and public transport vehicles). 
 
As far as the set of lines available to travel is concerned, the model assumes that, between each pair of 
nodes of the public transport network, there is a set of “common lines” or equally attractive lines for the 
users. Thus, at each station, passengers will take into account the set of common lines supplied to make 
their journeys and board the first vehicle with available capacity included in that set.  
 
SOLUTION ALGORITHM 
In order to solve the bi-level mathematical programming problem, the following heuristic algorithm is 
exposed: 
 
Step 1 – A vector of feasible frequencies  is generated and a distance dBzB between stops which may 
satisfy the constraints of the problem at the upper level. 

lf

 
Step 2 – The optimization problem is solved at the lower level; in other words, the origin-destination matrix of 
public Transport is allocated and the  equilibrium flows  obtained. *

lV
 
Step 3 – The feasible frequencies  and the equilibrium flows  are entered in the objective function at 
the upper level, and the objective function Z is evaluated. 

lf
*

lV

 
Step 4 – The Hooke-Jeeves algorithm is used to evaluate the new  frequencies and the new dBzB distances 
between stops, then returning to step 2. 

lf

 
The Hooke-Jeeves algorithm is repeated until no optimal frequencies and distances are found.  
 
HOOKE-JEEVES ALGORITHM 
For the Hooke-Jeeves algorithm, no special attribute is required of the objective function. The algorithm does 
not require this function to be convex nor an explicit analytical expression of its derivatives with regards the 
decision variables in the problem. It does, however, require the function to be continuous and evaluable for 
any feasible value of the variables. Any continuous function may be worked with, no matter how strange the 
form, because of the way in which the algorithm works. 
 



Although these characteristics offer an advantage from the point of view of applicability of the algorithm, they 
can create a disadvantage as regards efficiency because they do not use the regularity characteristics that 
the objective function may produce, such as, convexity of the function in each of the decision variables. 
 
On the other hand, this algorithm does not guarantee a global optimum unless the problem to be resolved is 
strictly convex. With public transport network design, because of the characteristics of the objective function, 
the Hooke-Jeeves algorithm only guarantees a local optimum. Therefore, to obtain a global optimum, it 
needs to be applied on the basis of different initial solutions with different values for the parameters involved. 
 
Description of the algorithm: 
 
The Hooke-Jeeves algorithm basically involves the repetition of two stages, which are: 
Exploratory search through each of the coordinates of the solution space in order to find a good local 
descent direction (reduction in the value of the objective function). 
Pattern movement, which consists of an advance in the direction determined in the first stage. 
 
a) Exploratory search in coordinates stage 
At this stage, the algorithm searches for a point indicating a good local movement direction. This is 
performed by increasing the value of one of the variables by a pre-set amount ("delta") and evaluating the 
objective function at this new point. 
If the value of the objective function is less than that obtained at the starting point, the new point is accepted 
and the next variable is analyzed. However, if the value of the objective function at the new point is greater 
than at the starting point, the original value of the variable is reduced by "delta" and the objective function is 
evaluated again. If the value of the latter is less than at the starting point, the new point is accepted and the 
next coordinate is analyzed. If the value of the objective function is greater than at the new point, the variable 
is returned to its original value, plus "delta", and the next coordinate is examined. 
 
This process is repeated with each of the decision variables in the problem. 
 
Once the process has been completed, we need to check that the value of the objective function at the point 
obtained in the exploratory search is lower than at the best base point found up to that moment. If it is lower, 
the new point is set as the base point and we can move on to the next stage of the method. If the exploratory 
search was unsuccessful, the value of the "delta" parameter is reduced and a new search stage is 
performed, this time starting at the best base point obtained up to that moment. 
 
b) Stage of advance in the direction indicated by the exploratory search (Pattern movement) 
If a good result was obtained in the first stage of the method, i.e. a point was found at which the value of the 
objective function was lower than the best base point, an advance is made in the direction indicated by the 
latter and the new point that was found. The length of this advance is determined by the difference between 
these two points multiplied by a pre-set value ("alpha"). 
 
Once an advance has been made in the direction determined in the first phase, we can carry out another 
exploratory search from the new point. This is a new iteration of the Hooke-Jeeves algorithm. The point 
found in the previous exploratory phase is maintained as the base point, which is used as the comparison 
criterion for the result of the new search. 
 
Algorithm stopping criteria 
The value of the "delta" parameter is often used as the algorithm stopping criterion. Each time the value of 
this parameter is reduced, it is compared with its tolerance (minimum possible value) and, if it is lower, the 
algorithm is stopped. 
 
The value of the "alpha" parameter is usually greater than the "delta" parameter because the exploratory 
phase only searches for a good local direction for movement whereas the second stage of the algorithm 
requires us to advance in this direction. 
 
The "delta" and "alpha" parameters are empirical so their values must be determined by tests, taking into 
account the speed of algorithm convergence and the solutions obtained for different values of these 
parameters. 
 
A second stopping criterion that can be used involves specifying the maximum number of iterations to be 
made (a complete iteration includes the exploratory search phase and the advance in the direction 
determined in it). 
 



Algorithm convergence  
If the objective function of the problem is strictly convex, then the Hooke-Jeeves method is clearly capable of 
obtaining the global optimum. However, if the function has local optimums, the algorithm can fall into one of 
these and the values of the parameters may not be sufficient to exit it. 
 
To increase the possibilities of obtaining the global optimum of the problem, we can re-apply it by choosing 
random starting points and varying the values of the parameters. 
Although the Hooke-Jeeves algorithm can obtain “good” solutions, it has a low convergence speed and 
hence a high consumption of computational resources, which are due to the characteristics of the method’s 
operation: the algorithm makes exploratory advances, increasing and decreasing the value of each of the 
decision variables in the problem. Each of these advances requires an evaluation of the objective function 
and hence solution of an equilibrium problem in transport networks, a process that takes up more 
computational time. 
 
To preclude this problem, Abdulaal and Le Blanc (1979) suggested a modification of the Hooke-Jeeves 
method, which consists of supposing that small variations in the values of decision variables do not produce 
significant variations in equilibrium flows. This allows us to conduct the exploratory stage with constant flows 
and hence limit the process of allocation to the base points determined after a complete iteration of the 
algorithm. This simplification enables us to obtain very similar results to those obtained using the original 
algorithm – albeit with considerable computational savings – particularly for solving problems with real 
transport networks.  
 
CONCLUSIONS 
This article illustrates a problem in public transport system design, based on the problem of locating bus 
stops and optimizing the frequency of lines along a given route. 
In this analysis, we have seen that the two problems cannot be isolated because the location of bus stops is 
based on the frequency of the buses serving the different routes, and frequency is also based on the number 
and location of bus stops. 
Therefore, the problem with the design of the public transport system for urban areas was approached as a 
two-level non-cooperative game (Stackelberg game), where the upper level minimizes social costs (user 
costs + operating costs + construction costs) and the lower level (public transport or multi-modal allocation 
model) describes a model of user behavior, which is assumed to follow Wardrop’s first principle.  
The heuristic solution algorithm proposed here obtains the optimal solution through successive 
approximations that consist of updating the frequencies of the different lines (using the Hooke-Jeeves 
algorithm) and the location of bus stops (minimizing the objective function of the upper level) between one 
iteration and the next, so that the objective function of the upper level is “displaced” towards its minimum 
values.  
 
To consider the interaction between demand and supply between one iteration and the next, it is assigned to 
public transport (or bimodal depending on the case). Thus, each iteration can have equilibrium flows that are 
consistent with the calculated frequencies and location of bus stops. 
 
Lastly, we can confirm that a different approach is used here to that commonly used in the literature, 
although it is actually more correct than traditional methods. The only disadvantage of this method is that we 
cannot guarantee the uniqueness of the solution as in many cases, due to the non-linearity of the problem, it 
will in all likelihood depend on the initial feasible solutions with which the algorithm was begun. 
However, as in all these types of study, we can confirm that obtaining a local optimum is more than sufficient 
for solving this type of problem. 
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