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Synopsis 
Signal controls are designed for increasing safety and regulating conflicting flows. On the other hand they 
may highly reduce road capacities if not properly set. It is always a challenge for the road authority to find the 
best design, both from the operational and from the infrastructural point of view. From both sides a good 
estimation of the traffic to be served and the network costs is needed. 
Good design of the road geometry at signalized intersections helps at better managing the different streams 
approaching the intersection, avoiding conflicts between flows diverging to different directions. Often in 
practice accumulation lanes are constrained to be smaller than required for spatial reasons, especially in 
urban areas. In other cases the error comes from bad design of the intersection.  
The Highway Capacity Manual (HCM) provides analytical formulae for computing the mean value of the 
queue but does not give any suggestion on how variable this value can be. An underestimation of how many 
vehicles to be served at an intersection can raise several problems, i.e. spillback with consequent increase 
of waiting times and lane blocking together with serious decrease of safety. Cars may not be served within a 
green phase because blocked by a spillback of another lane; moreover they can try risky maneuvers to be 
served and increase the chance of accidents. 
This paper proposes a probabilistic method based on the Markov chain renewal process, especially suited 
for practitioners, to compute the dynamics of queues and their variability to design and evaluate the optimal 
length of accumulation lanes with particular regard to spillback avoidance. The method allows the analyst to 
estimate the control delay for an individual vehicle in time and the uncertainty of this delay to occur. 
We propose also a heuristic model, which computes the average and the standard deviation of queues in 
time for variable demand and variable signal settings. The model has been implemented in a test scenario 
and compared with the Markov Chain simulation results. To assess the consequence of spillback we also 
compute the queue dynamics in a multilane and multiphase signalized intersection, showing how the queue 
on a restricted turning lane can influence the formation of queues and the behavior of users on the other 
lanes. 
The model is shown to fit better simulation data generated with Markov Chain processes than the HCM 
especially when the intersection is slightly under- or oversaturated. Simulation data suggests assuming in a 
design and evaluation study for accumulation lanes a queue distributed as Normal constrained to be non-
negative. A risk-averse road administrator can then set a certain probability threshold and compute the 
maximum amount of passenger car units an accumulation lane needs to be designed for. This method is 
expected to better estimate this length than using the HCM especially when a responsive control signal is 
implemented. 
 



Reliable design and evaluation method 
for multilane signalised intersections 

 
Urban traffic is increasingly keeping the attention of researchers, since congestion characterizes most 
metropolitan areas and demand is recurrently too large for the actual capacity of the roads. Many urban 
networks have been, or need to be, designed to satisfy a large amount of flows. In this context intersections 
represent critical points for assessing the efficiency and reliability of the network. Dynamic traffic control 
strategies, like adaptive and actuated control strategies, are, among the Dynamic Traffic Management 
measures, strategies able to modify the capacity of the infrastructure and to adapt it to the demand without 
physically modify the roads. Aim of these strategies is to both reduce as much as allowed the delays, queue 
lengths and stops, and guarantee safety to the travelers’ maneuvers at such nodes. An important feature of 
such strategies is also to keep the queue lengths under a certain value in order to avoid the spillback effect 
(occurring when the length of the queue is larger than the length of the section), which creates problems and 
extra delay also in other parts of the network. A good infrastructure design should then take into account the 
intersection demand and offer enough space to efficiently use the signal plan. 
Traffic control is one of the determinants of travel times and costs in an urban area. In fact, delays due to 
waiting times at intersections represent nearly 50% of the total time a traveler spends during his journey. 
Taking into account the extra costs a traveler commonly feels and associates to these nodes respect to link 
costs, like stress of waiting at the queues and discomfort produced by frequent stops, it is straightforward to 
understand the importance both from the road manager point of view and from the travelers’ point of view of 
having a network capacity able to serve the different flows approaching the nodes within acceptable times. 
On the other hand, the interactions between multiple vehicle-classes, different streams, heterogeneity of 
speeds etc. make the assessment of such strategies really difficult, especially when congestion is involved. 
Aim of the road manager is then to find the best set-up for the traffic signals in order to guarantee acceptable 
waiting times for all vehicles. Due to the dynamic and the stochastic nature of the variables involved and the 
complexity of the system, it is really difficult to compute with a sufficient accuracy the intersection costs. 
A model, which estimates as good as possible the dynamics of queues, and also the variability of these 
queues, is one of the main challenges in the recent research. 
A large uncertainty characterizes the queue estimation and prediction at signalized intersections (van Zuylen 
and Viti 2003). We noticed that, under some quite general assumptions, and considering the inflows and the 
outflows as stochastic variables, the standard deviation is in some cases comparable and even larger than 
the average. We showed also that this phenomenon is especially observable when the degree of saturation 
floats around 1. Since dynamic traffic control strategies (i.e. traffic actuated signals, or adaptive control) are 
usually set in order to give to the average inflows the minimum amount of green time to clear the intersection 
(i.e. Smith 1980, Bell 1990). This condition is often met in real life. 
If then a road manager has to evaluate or design the proper geometry of an intersection, such as how many 
lanes to reserve to a certain direction flow, or how long an accumulation lane (here intended as an exclusive 
turning lane ending up at the intersection) should be, he should primarily have at hand valuable queuing and 
delay models, which should reflect as good as possible the queues and delays vehicles experience in reality 
and also be able to provide consistent results when changes in the scenario make a comparison with reality 
impossible. 
Most available methods to evaluate and predict queues and delays at intersections (i.e. the Highway 
Capacity Manual 2000, Akcelik 1981) provide simply an average value of the queue. A standard design 
problem implies then the analysis of the daily demand that approaches the intersection and the way these 
flows split among all available directions.  
If the maximum demand among the analyzed is considered for designing the geometry of the intersection the 
road authority might get the risk to build up such long lanes or too many dedicated lanes that they are nearly 
always unused, producing enormous costs for the construction and a large impact to the environment. 
If on the other hand if the road manager decides to use an average value, there could be a high chance that 
the space is not sufficient to store the vehicles, and spillback may often occur for some times of the day. 
In this paper we aim at providing a method for estimating the queue length dynamics and its distribution. The 
proposed method allows the road manager a better evaluation and design of the intersection geometry, in 
terms of number of lanes to dedicate to some streams and in terms of length of the accumulation lanes. 
To do so, we first propose a statistical approach for the estimation and prediction of queues based on the 
Markov Chain process, which allows one to compute not only average values but also a complete probability 
distribution of queues in time. Later we compute with this method the queue dynamics in a multilane 
intersection, showing the consequences of spillback of an accumulation lane on the other lanes and on the 
travelers’ behavior. 
We present later a heuristic model, which accurately mimics the results of the Markov Chain simulation and 
that reduces the computational effort required to compute such technique. 



We finally solve the problem of finding the optimal length of an accumulation lane given the probability for a 
spillback to occur a road manager is willing to accept. 
We first present the design problem and we explain the need for a model, which is able to compute the 
probability distribution of the queues. The next section introduces the concept of control delay and of random 
queues. A description of the Markov Chain mesoscopic simulation model follows together with the 
presentation of the heuristic analytical expression. Later, an example of application of the reliable design and 
estimation method is presented. Finally we draw our conclusions. 
 
DESCRIPTION OF THE DESIGN PROBLEM AND MOTIVATION OF THE APPROACH 
The scope of this paper is to provide the practitioners a method to evaluate and design the geometry of an 
intersection, with particular regard to the length of the accumulation lanes, which is also able to evaluate the 
risk of spillback and the costs this phenomenon produces to the other streams. 
In this section we build up the scenario where the studied problem takes place. Figure 1 shows an example 
of a road section placed upstream of a signalized intersection. In this example the section ends with three 
accumulation lanes, two dedicated to straight-through vehicles and one is an exclusive right-turn lane. 
A signal control may be set in order to give different green times according to the required clearance time for 
each stream. The flow that approaches the intersection is split randomly between the two lanes before the 
starting of the accumulation lanes. 
In general, the distribution among lanes is not equal. If the left lane is dedicated to overtaking operations 
usually a larger percentage of vehicles will be observed on the right lane. 
If the road geometry allows the driver to check the queue in front of him and on the other alternative lanes, 
he (or she) will try and move to the lane with the shortest queue observed at the time of his (her) decision. 
Another factor to take into account in this problem is the gap acceptance of the users. A user might be willing 
to change lane but this intention can be impeded by the presence of other vehicles on the target lane at the 
moment the traveler wants to change lane. Thus, not all vehicles that want to change lane have actually the 
chance to do it, contributing to the asymmetric evolution of queues on the different lanes. 
Furthermore, if a queue builds up on the exclusive right-turn lane and exceeds the length of this lane, it will 
block the right straight-through lane as well, producing hindrance to the vehicles arriving on that lane. 
This phenomenon will push the flows to increase the lane-changing maneuvers towards the left lane, 
reducing the total intersection capacity. 
 

Allowed lane change section

Accumulation lane
 

Figure 1: example of a multilane section before a signal 
 
The described problem involves several different operational and psychological factors, which make the 
estimation of the queues at each lane and of the control delay very difficult. 
We aim at finding a method to evaluate and predict such queues. This method should be also able to provide 
the probability distribution of these queues to occur. 
In literature estimation and prediction models are frequently classified in three methods: macroscopic, 
mesoscopic and microscopic. 
Microscopic simulation models are able to provide very accurate results, since they simulate traffic at the 
vehicle level. These models can provide estimates of delays close to reality and catch the variability of such 
estimates since they can consider traffic heterogeneity due to i.e. different driving behavior, different traffic 
conditions, road geometry and so forth. This technique is often preferred for evaluation studies, where the 
road geometry is already fixed. On the other hand this detail level increases the computational effort and 
speed of these models, limiting their use for optimization and design purposes. If several different scenarios 
need to be evaluated several simulations should be made, and this is unfeasible with such simulation 



programs. A last drawback of such programs is that the output is highly dependent on the random nature of 
the input variables. To generate a sufficient number of outputs to estimate an accurate statistical distribution 
of queues and delays several simulations should be made as well. 

 
Figure 2: simulation of a queue using the program VISSIM 

 
Figure 2 shows the aggregation of 100 simulations of queues detected for 100 cycles of 60 seconds each at 
a single lane signalized intersection when the degree of saturation is nearly 1.  The used simulation program 
is VISSIM (PTV 2003). After these iterations the program gives a measure of the average length of the 
queue but also its variability with sufficient preciseness. As we can see, although the average value tends to 
stabilize around a certain value, in some cases the queue may have very a large value. In one occasion (the 
top point displayed on the picture) the queue detected was about 8 times the average value. 
Sometimes practitioners are more interested in having results in a faster way. Macroscopic and mesoscopic 
models are certainly faster methods but they are characterized by a lower level of detail. Macroscopic 
models are able to compute only average conditions based on average inputs. 
Mesoscopic models cannot compute each vehicle delay with the same accuracy of microscopic models but, 
despite of the macroscopic ones, they can still provide an accurate statistical distribution of network costs. 
This distribution is computed without the need of several simulations, keeping the computing time low. This 
makes this method suitable for our research. 
In summary the objective of the paper is threefold: 1) we propose a mesoscopic methodology to analyze the 
performance of a traffic network by taking the example of a simple isolated intersection, 2) we want to 
provide the practitioners with an easy-to-use analytical formula to evaluate the length of the queue and its 
uncertainty and 3) we investigate in detail the effects of spillback occurred at an accumulation lane in terms 
of queue length and travelers’ lane-changing behavior at the adjacent lanes. 
In the following sections we describe the mesoscopic method we propose for the evaluation of reliability of a 
signalized intersection. We also propose an analytical expression for the average and the standard deviation 
of the queue, which accurately follows the trend displayed by the Markov mesoscopic model. 
Next section introduces the relationship between the queue length and the control delay and explains the 
influence of random queues in such delay. 
 
MODELING QUEUES AND DELAYS AT INTERSECTIONS 
Control delay is usually defined as the difference between the travel time experienced by a vehicle passing 
an intersection and the hypothetical travel time experienced if the intersection is not controlled. According to 
the Highway Capacity Manual (HCM 2000), if the intersection is under saturated, delay is characterized by a 
deterministic and a stochastic component. 



The deterministic component is determined by the average degree of saturation. The stochastic component 
computes the waiting time due to the random arrival of vehicles during the cycle time at the intersection.  
Another component it can be observed in practice is due to the fluctuation of the demand in between cycles. 
It is common in practice to assume the arrivals as constant at least for a limited period of time, but in reality 
these arrivals are characterized by a random fluctuation along this average value. 
If the green phase is not long enough to handle all the cars, the queue at the end of the green phase is not 
empty. If the number of arrivals is structurally higher than the number of cars that can depart during the 
green phase, this term will grow every cycle and it will depend on the duration of the period over which the 
delay is calculated. If the number of arrivals is, on the average, less than the number that can depart within 
the cycle, the green phase is under saturated on the average. Due to stochastic variations in the number of 
arrivals, there is a finite probability that still one or more cars will have to stop twice because the green phase 
could not handle the whole queue. This component of the delay is called the overflow delay. The queue that 
evolves in this case is defined accordingly as overflow queue. 
The presence of this non-zero initial queue produces an additional delay introduced in the Highway Capacity 
Manual only in his latest version (HCM 2000). The HCM 2000 specifies then three terms for the estimation of 
the delay: 
 

1 2d d PF d d= ⋅ + + 3    (1) 
 
with: 

- d= total experienced control delay 
- PF =progression factor, which accounts for signal coordination 
- dB1B =uniform delay 
- dB2B =random delay and 
- dB3B =initial queue delay 

 
The term dB3B depends on the assumed initial queue value. The manual provides a formula for dB3B as function 
of time T, the capacity c and the initial queue length Q: 
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This formula requires the specification of the type of arrival profile, which determines the value of the 
parameters u and t and gives the delay in minutes per vehicle caused by the non-zero initial queue at the 
starting of the cycle. 
A good estimation of the overflow delay is then subject to a good estimation of the overflow queue. The 
manual does not provide an accurate model concerning the evolution of the queue in time, but suggests the 
use of a linear deterministic model. When the value of the degree of saturation floats around 1 the initial 
queue delay is enormously larger than the uniform and the random components and this method tends to 
underestimate the control delay. 
Taking into account that often dynamic signal control systems are set to vary along this range the need for 
an accurate model especially in these conditions is straightforward. 
In past research (Viti and van Zuylen, 2003, 2004a and 2004b) we applied the Markov Chain renewal 
process to analyze the dynamics of overflow queues at signalized intersections, which contribute to delay 
propagation in time and also to its uncertainty. The model is valid for single lane intersections, where 
overtaking operations are not allowed and the FIFO condition strictly holds. 
Some authors used already this technique to generate realistic queue lengths, before the authors did, in an 
isolated intersection context (i.e. Brilon and Wu 1990, Olszewski 1990, and Fu and Hellinga 2000). 
An analytical model has been derived for single lane intersections, which mimics accurately the results of the 
Markov model for variable demand and control settings. The queue model has been compared with the 
Highway Capacity Manual delay formula and it has been proved to solve the underestimation problem the 
HCM formula suffers when the demand is slightly under- or oversaturated when compared to the Markov 
model (Viti and van Zuylen, 2004b). 
Even if an analytical expression for this simple case has been found, it is difficult to do the same if a more 
complex problem is tackled. The Markov Chain process can be still easily extended, as it will be shown in the 
next section. 
Since the paper focuses on the evaluation of queues and delays with particular regard to the occurrence of 
spillbacks we extend here the Markov model to a multilane section like the one in figure 1. 
 



 
 
MODEL DESCRIPTION 
 
This section introduces the evaluation and design model proposed. The meso-simulation model consists of 
two main parts: the queuing process at each lane, which works similarly to the single-lane case, and the 
lane-changing process, which at each cycle updates the arrival distribution among lanes depending on the 
queue length observed at the end of the prior cycle. These two models combined lead to the extension of the 
single-lane Markov model to multilane intersections. 
Furthermore, we show here that, under some assumptions later specified, the queue evolution on the 
accumulation lanes is not dependent on the lane changing behavior before the intersection, but influences it 
and the evolution of queues at the adjacent lanes. Thus, the accumulation lane design problem can be 
independent on this model and treated as an isolated single-lane case. This allows one to use the simpler 
model presented in Viti and van Zuylen (2003) and the heuristic expression previously proposed in Viti and 
van Zuylen (2004a, 2005). 
 
Markov chain meso-simulation model of stochastic queues 
The average length of the queue E[Q(0)] at the end of a (fixed time) green phase on a controlled intersection 
is one of the terms in the formula that determine the expected value of the delay, E[W] (Miller, 1968): 
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with 

- r = duration of the red phase (s) 
- q = flow of an intersection arm (veh/h) 
- s = saturation flow (veh/h) 
- y = load ratio q/s. 

 
For the value of E[Q(0)] several expressions have been developed (i.e. Catling 1977, Kimber and Hollis 
1979, Akcelik 1980). In the case of an oversaturated intersection this quantity will grow from cycle to cycle 
and it follows a linear behavior.  
As previously said, the average queue is non-zero also for intersections that are still undersaturated, but 
where the queue length is lower than the equilibrium value. If the queue length is longer than the equilibrium 
value, the queue will instead decrease from cycle to cycle towards the equilibrium value. 
Olzewski (1990) studied the queue length dynamics with a model in which the probability distribution of the 
queue length is calculated from cycle to cycle: 
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with 

- P(n.j) = probability of a queue of j vehicles at the end of the nth green phase  
- σ = the variance of the saturation flow and 
- pBlB  = probability of l arrivals in the cycle. 

 
To compute this probability distribution in discrete time steps we apply the Markov Chain renewal process 
formula, where the product of the distribution at time t-1 and the transition matrix PBijB determines the queue 
probability distribution at time t: 
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The probability distributions are bounded to be obviously non-negative and to be not larger than the 
unsignalized road capacity N. 
The transition matrix keeps track of the joint probability of arrivals A and the service S and is determined by 
the following conditions: 
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The method is valid under assumptions of variable, step-wise average demand, and also time-varying signal 
settings. Figure 3 displays the evolution of a queue for an assigned fictitious demand, which floats around 
the capacity of the signal control, set with fixed green time and cycle time. The average queue grows (bold 
line, figure below) with the demand but the clearance time is longer than the one estimated by the Highway 
Capacity Manual (which would predict a non-zero length only when the flow is larger than 720 vehicles per 
hour, thus only for 30 minutes of the entire evaluation period). The Markov model allows one to compute also 
the standard deviation of the queue (dotted line), giving a measure of the variability observed in a daily 
scenario. 

 
Figure 3: mesoscopic simulation of a queue at an isolated intersection 

 
Under heavy traffic conditions on more than one arm of the intersection dynamic signal plans reduce the 
average and variance of the queue but they cannot always serve the vehicles within a green time (Viti and 
van Zuylen 2004b). 
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Figure 4: evolution of the queue length distribution in time 

 
The Markov model offers to the road manager the opportunity to estimate the average trend of the queue 
evolution in time once the input characteristics have been fixed together with their statistical distribution. 
Moreover, at every cycle, the model computes the total distribution of the queue, as printed in figure 4. Here 
the queue distribution has been computed for a fixed degree of saturation of 0.95 and with a starting known 
value of 18 vehicles. We see that already after 15 cycles the distribution is very flat, thus uncertainty and the 
length of the queue could be very high and with a non-negligible probability. 
 
Queuing model extended to multilane intersections 
The model above described has been shown to compute the distribution of the queue for a single-lane 
isolated intersection. The evolution of the queue at intersections, which belong to an arterial corridor, should 
be different from the one above described and the reduction of average and standard deviation of the queue 
is consistent, since the aggregation of vehicles in platoons and the filtering effect due to upstream signals 
reduces especially the random component and especially when signals are well coordinated (Viti and van 
Zuylen, 2005). A Markov approach to the signalized arterial corridor problem was recently proposed in 
Geroliminis and Skabardonis (2005). 
In this paper we do not consider this issue, since it does not represent the worst case scenario for the 
analyzed problem. Thus the above-described model can be still used in an arterial corridor only if signals are 
not properly coordinated. 
The queuing process depends on the randomness of arrivals and departures, but the demand at the 
following cycles can be influenced by the queue distribution itself because of lane-changing behavior. We 
assume here that the user increases his “intention” to change lane the larger the difference between the 
queue at his lane and the target one is. Since queue length is characterized by a probability distribution also 
this intention can be described by a probability distribution. Once this probability is computed we have to 
compute whether it is possible for the vehicle to do the maneuver by applying a gap-acceptance model. We 
apply the Bayesian updating rule to compute this chance, thus we compute the conditional probability that a 
vehicle changes his current lane. This probability is simply computed by the product of the two probabilities, 
since we assume they are independent stochastic variables. 
Let i be a lane of a road section just before a signalized intersection and j be an adjacent lane. Let us 
suppose that the user has time to evaluate the queue lengths in front and (eventually) change lane. Suppose 
also to know the number of vehicles served within a cycle C by knowing the saturation flow SBiB and the length 
of the green phase g. 



Knowing the average and distribution of the split rates we can compute for each lane the flow distribution dBiB 
in a cycle by using the relationship i id dα= ⋅ , where d is the flow approaching the intersection and αBiB is the 
percentage of vehicles entering from lane i. This component is also a random variable. 
Let  be the queues at the two lanes at time t and let us suppose to know the queue distribution at 

the starting of the simulation for each lane . We assume that the travelers’ probability of intention to 
change lane is: 
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We assume the probability as a known function h, which increases and gets closer to 1 the larger the 
difference between queues is. Inversely, if the queue at the traversing lane is smaller there is no reason to 
consider a possible lane change to the adjacent lane.  
A user can change lane only if there is enough gap for the maneuver. Known the number of arrivals we can 
deduce the distribution of distances among cars and consequently the probability of having enough space to 
change lane. For example if the arrival distribution is poissonian the headway distribution can be 
approximated as exponential. 
The chance of having a sufficient gap to change lane is then equal to the probability (jP l l≥ )  that the 

distance between cars observed is higher than a predefined threshold l . 
Once computed these probabilities the number of vehicles  changing from lane i to lane j will be given 
by: 

i jd →
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The total number of arrivals fBiB at lane i will then be: 
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Known the distribution of departures is  within a cycle, the queue distribution at the following cycle can be 
computed like we did for single lane isolated intersections: 
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Note that in the single lane problem the arrivals were independent on the present queue, and the transition 
matrix was invariant with time, while in this case it is time-dependent. 
This part completes the modeling of queues with lane changing behavior but not considering the spillback 
from another lane. 
Suppose now that there is an accumulation lane aside of one of the straight through lanes. For simplicity we 
assume that the vehicles arriving at the intersection and that have to turn are already at the closest lane 
before entering in the accumulation lane, thus no lane changing to reach the accumulation lane is 
considered. Since it happens frequently in real conditions, we assume the green time for this extra lane 
different from the straight through lanes, gBaccB.  
Under these assumptions, the queue at the accumulation lane is computed exactly as a single lane 
intersection using the standard single lane Markov Chain. 
Let βBiB be then the fraction of the total demand d representing turning flows and let spillbackq  be the maximum 
number of vehicles, which can be placed in the accumulation lane without creating a spillback effect. Due to 
randomness of arrivals there is a non-zero chance of having spillback. The probability that spillback occurs 
can be computed with the Markov model.  
In this condition the adjacent lane will be influenced by this phenomenon. We suppose here that if the length 
of the adjacent lane queue is smaller than the accumulation lane queue the user will consider for his lane 
changing behavior the latter.  
Thus, all equations above do not change apart conditions (7) that become: 
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As long as the probability of spillback is small also the extra delay given by this phenomenon will be small. If 
on the other hand there is a non-negligible chance that the green time is not sufficient to clear the queue at 
the accumulation lane, the adjacent lane will also reduce in some cases its capacity, creating extra demand 
on the other lanes, as it will be shown in the case study section. 
 
Evaluation and design of intersections using the proposed method 
The previous section described in detail a method to estimate the queue length at each lane and a way to 
evaluate the queue length distribution especially taking into account the spillback effect. 
If the problem is to evaluate an existent infrastructure, the road manager can use this method to estimate the 
delay at each lane, since the geometry is already fixed. This method can be also used to find the optimal 
signal settings, especially when the signal is multiphase. 
If on the other hand the road manager has to design a new intersection or has the chance to modify the 
geometry, he can use the method to calculate the most convenient scenario. Since we showed that under 
the declared assumptions the lane changing behavior at the section upstream does not influence the queue 
evolution at the accumulation lanes, the design problem can be restricted to the use of the single-lane 
queuing model. In the following we present a faster method to solve the design problem. 
 
Proposed analytical model of overflow queues 
Traffic practitioners might be interested in having a simpler and easy-to-use formula to have a quick answer 
about the optimal length of the accumulation lanes instead of using the mesoscopic method. 
In Viti and van Zuylen (2004b) we showed that under the assumption of arrivals distributed as poissonian the 
queue distribution can be well approximated by a Normal distribution. Known the average and standard 
deviation in time, the road manager can easily compute the value of the queue and consequently the length 
of the accumulation lane by simply fixing the threshold probability beforehand. 
The design problem needs only a method to compute the average and the standard deviation, without the 
computation of the total probability distribution. 
We assumed earlier in the paper that the queue building up at the exclusive lanes is not influenced by the 
queues at the straight through lanes, and that it can be computed by using the single-lane Markov Chain. 
A heuristic model has been shown to accurately mimic the results of the Markov Chain process in terms of 
average value and standard deviation (Viti and van Zuylen 2004a), also under the assumption of variable 
demand (Viti and van Zuylen 2004b) and variable signal settings (Viti and van Zuylen 2005).  
Here we reprint the simplified formula presented in Viti and van Zuylen (2005) together with an expression 
for the standard deviation. 
The average queue behavior follows in general the deterministic behavior if the degree of saturation is 
smaller than about 0.70 and when it is larger than about 1.2, while in the intermediate cases it is 
characterized by two phases, an initial linear trend, QBlinear,B and an exponential one, QBexpB: 
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with 

- QB0B = initial queue at the starting of the evaluation period 

- QBeB = equilibrium queue, computed with the Miller formula (Miller 1968) 01.5( )
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= +  is the limit value of the degree of saturation above which the stochastic effects are 

relevant (Akcelik 1980) 
- c = capacity of the arm (veh/cycle) equal to the saturation flow S multiplied by the green ratio g / C 
- x = degree of saturation 
- QP

*
P = conjunction point between the two phases 

 
The parameter β  is dependent on the degree of saturation and regulates the time needed for the queue to 
pass from the initial state to the equilibrium state. An expression of the parameter has been given by: 
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The conjunction point is computed in such a way that the final function is continuous together with its first 
derivative and it is computed by the formula (for the derivation of the formula see Viti and van Zuylen 2005): 
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=  and  is the Lambert or Omega function (Corless et al. (1996)). lambertW

 
The standard deviation model is computed accordingly by just replacing the initial linear trend with the 
following quadratic expression: 
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and by multiplying the equilibrium value by the factor 
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Figure 5: Comparison between the Markov model and the heuristic model 

 
Figure 5 compares the results in terms of average and standard deviation of the mesoscopic and the 
heuristic models. In this example we chose an initial queue known and equal to 50 vehicles. The models 
predict the queue length and its variability for 300 cycles at hypothetically the average demand constant for 
the whole evaluation period. The average degree of saturation has been fixed to 0.95.  
As we can see from the picture the difference between the results both in terms of average and of standard 
deviation is very small, in the order of a single vehicle error. 
 
 
 



NUMERICAL EXAMPLE 
 
We solve here the evaluation problem and the design problem for the road section depicted in figure 1. To 
show the dynamic evolution of lane changing behavior and the influence of spillback on the accumulation 
lane we assume constant demand for the whole evaluation period. The computation of the reliable design of 
the accumulation lane length follows. 
For the first problem we are especially interested in knowing to what extent the dynamics of the queue can 
influence lane-changing behavior in slight undersaturated conditions, where queue dynamics do not have 
linear behavior. First simulation considers only the 2 straight through lanes, initially with 60% of vehicles on 
the right lane. Second simulation adds up the accumulation lane placed aside the right through lane. 
Saturation flow is set to 1800 vehicle per hour, while cycle and green time and set respectively to 60 and 24 
seconds, while green time for the accumulation lane is set to 10 seconds and maximum number of vehicles 
allowed is set to 5 vehicles. 
Figure 6 shows, on the top pictures, the evolution of the average and the standard deviation of the queues at 
the straight through lanes, while the bottom pictures show the lane-changing behavior expressed by the 
evolution of the split rates in time. Left figures show the condition when the degree of saturation of the signal 
is set to 0.95. Because of lane changing possibility both lanes reduce their average queue with respect to the 
single lane case shown in Viti and van Zuylen (2004a). Standard deviation changes accordingly. Due to gap 
acceptance limitation, the two lanes are still not having the same demand.  
When demand increases, here computed for a degree of around 0.97, lane changing also increases, since 
intention to change lane increases and flows tend to be equally distributed (center). When an equal 
distribution is met, queues tend asymptotically to increase with the same behavior. The two right pictures 
show instead the problem when also the right accumulation lane is considered. The chance to have spillback 
on the right lane due to the right accumulation lane increases the demand on the left lane further (right) and 
it becomes even larger than the right straight-through lane demand. The more the demand on the 
accumulation lane increases the larger the chance that an amount of flows moves to the left lane. 
 

 
Figure 6: numerical examples of queue evolution and flow distribution in time 

 
We saw from the above picture how the interrelationship between queues, lane-changing behavior and the 
limitation due to gap acceptance can change the queue evolution and the distribution of flows and queues 
between the available lanes. 
The proposed lane changing model results depend on the choice of the parameters for the lane-changing 
aspiration model, the gap acceptance and the dynamic queuing model. The calibration of these parameters 
is needed for its practical use. The parameters chosen for the example are only for illustration purposes and 
do not pretend to be realistic. 
Figure 7 shows the evolution of the distribution of the queue for the first 10 cycles of the queue computed for 
x=0.95 and starting from a zero initial queue. After these cycles the probability of a queue being for example 
longer than 10 vehicles is about 17%, thus non-negligible. If an accumulation lane can store at maximum this 
amount of vehicles there will be the above chance for a spillback to occur. 
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Figure 7: prediction of the queue distribution for 10 cycles 

 
Inversely, if the road manager aims at keeping this percentage under a certain threshold, he can calculate, 
by analyzing the total daily demand and generating these probability distributions, which is the value of the 
queue that corresponds to this percentage. 
Accordingly, stated the equivalence between average and standard deviation computed with the Mesoscopic 
method and the heuristic method, this procedure can be done with the use of the simpler analytical 
expression of the queue and assuming the queue as normally distributed. 
 
CONCLUSIONS 
This paper presented a method to estimate and predict the queue distribution at multilane isolated signalized 
intersections. We used a mesoscopic simulation technique to model the queue dynamics and its variability in 
time and a probabilistic method to simulate lane preference and gap acceptance of the users to model the 
interaction between lanes at the intersection.  
We show in the paper that queuing models should consider travelers’ lane changing due to unequal queues 
at the intersection combined with a gap acceptance model to accurately estimate the delays that a traveler 
may incur. Moreover we showed that extra delay could be observed if an accumulation lane is badly 
designed, since the spillback effect can influence the dynamics of queues at other lanes. 
We proposed then to use this method also to design the optimal, in the reliability sense, length of the 
accumulation lanes in order to efficiently use the intersection with an acceptable chance for a spillback to 
occur. 
To help practitioners at having a handy formula, we proposed also a heuristic analytical expression, which 
well substitutes the more complex mesoscopic model and makes the design problem easy and fast to be 
solved. 
The method is expected to help road authorities at designing more efficiently the intersection geometry, in 
terms of length of exclusive turning lanes and required number of lanes for each flow stream. Moreover the 
method gives an accurate estimation of the costs when the road geometry is fixed and the authority has to 
evaluate the operational efficiency of the intersection, and it represents a valuable method for solving in a 
similar way several Dynamic Traffic Management and network design problems. 
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