Società Italiana Infrastrutture Viarie SIIV ACADEMY, Torino 15th April 2024

ADVANCEMENTS IN ROAD ENGINEERING TOWARDS GREEN AND DIGITAL TRANSITION

Mechanical behaviour of asphalt concretes for road pavements: predictive modelling by Machine Learning

Nicola Baldo Polytechnic Department of Engineering and Architecture University of Udine, Italy

Topics of the lecture:

- ✓ Machine Learning & ANN overview
- ✓ Case study n.1
- ✓ Case study n.2
- ✓ Case study n.3
- ✓ Final Remarks

Artificial Intelligence vs Machine Learning vs Artificial Neural Networks vs Deep Learning

Nicola Baldo University of Udine

Machine Learning: a data-driven approach

Nicola Baldo University of Udine

Machine Learning applications: Face Recognition, Computer Vision, Image Classification

Nicola Baldo **University of Udine**

Artificial Neural Networks & Pavement Engineering

Nicola Baldo University of Udine

Artificial Neural Network: inspired by biological brain

Biological Neural Network Biological Brain

Nicola Baldo University of Udine

Artificial Neural Network: inspired by biological brain

Nicola Baldo University of Udine

Nicola Baldo University of Udine

Neurons work in parallel and are organized into interconnected layers.

Each layer is characterized by a different function and a different number of neurons.

Neurons in the same layer can not communicate with each other.

Shallow Neural networks: architecture characterized by only one hidden layer.

Deep learning model: neural network characterized by more than one hidden layers.

Feedforward networks: Information flows only in one direction.

Input layer

$$\overline{x}_i = (x_{1i}, x_{2i}, \dots, x_{pi})$$

 $i = 1, \dots, n$

Nicola Baldo University of Udine

Input layer $\overline{x_i} = (x_{1i}, x_{2i}, \dots, x_{pi})$ $i = 1, \dots, n$

Output layer $\overline{y_i} = (y_{1i}, y_{2i}, \dots, y_{ci})$ $i = 1, \dots, n$

Nicola Baldo University of Udine

Feedforward Network

Nicola Baldo University of Udine

Transfer Function

Hyperbolic tangent function

Training procedure

The weights of the connections are defined through a "**training**" process.

In supervised learning, weights are progressively adjusted to minimize the difference between experimental targets and network output, using <u>backpropagation</u> algorithms:

- Gradient Descent
- Levenberg–Marquardt
- Bayesian Regularization

Training process: Underfitting & Overfitting

Backpropagation Algorithm: Bayesian Regularization

$W^{e+1} = W^e - [J^T(W^e)J(W^e) + \mu_e I]^{-1}J^T(W^e)v(W^e)$

W	Matrix of weights and biases
е	Generic iteration with $e \in \{1, \dots, E\}$
J	Jacobian matrix of training loss function $F(\cdot)$ with respect to W^e
μ	Learning step size
Ι	Identity matrix
ν	Network errors vector

$F(\widehat{\boldsymbol{y}}(\boldsymbol{W}^{e}), \boldsymbol{y}, \boldsymbol{W}^{e}) = \beta \|\widehat{\boldsymbol{y}}(\boldsymbol{W}^{e}) - \boldsymbol{y}\|_{2}^{2} + \alpha \|\boldsymbol{W}^{e}\|_{2}^{2}$

Experimental target vector Predicted output vector

Regularization parameters set according to David MacKay's approach

Nicola Baldo University of Udine

Training process: Data set partition

overfitting phenomenon

Hold-out Method

With regard to the hold-out method, it is worth pointing out that such a practice has two major drawbacks when the number of observations is small: first, some relevant patterns may be excluded from the training set; second, the training-test splitting makes the model sensitive to the randomness of data in the training set.

k-fold Cross-Validation

k-fold Cross-Validation is a resampling technique used to elaborate an actual model on a limited data sample. It consists in dividing the data sample in k-partitions. Each sub-sample is used once as validation set and k-1 times as training set.

ANN Optimization

ANNs models are often based on a network structure set "a priori".

The search for the optimal network architecture is one of the most difficult tasks in ANN studies and consists of tuning the model settings, called hyperparameters, that yield the best performance score on a validation data-set.

Standard methods are based on random or grid search.

University of Udine

partimento di Ingegneria dell'Ambiente, del Territorio delle Infrastrutture

Torino 15th April 2024

Case study n.1

https://doi.org/10.3311/PPci.19996 | 1 Creative Commons Attribution ①

Periodica Polytechnica Civil Engineering

Road Pavement Asphalt Concretes for Thin Wearing Layers: A Machine Learning Approach towards Stiffness Modulus and Volumetric Properties Prediction

Nicola Baldo^{1*}, Matteo Miani¹, Fabio Rondinella¹, Evangelos Manthos², Jan Valentin³

¹ Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, Via del Cotonificio 114, 33100 Udine, Italy

² Department of Civil Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece

³ Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 166 29 Prague, Czech Republic

* Corresponding author, e-mail: nicola.baldo@uniud.it

Introduction and Scope

- The goal of this research was to implement a data-driven methodology <u>to predict</u>, by means of ANNs, <u>stiffness and volumetric properties</u> of Asphalt Concretes for **VERY THIN** road pavement wearing **LAYERS** (AC-VTL) starting from few compositional variables.
- The experimental data analyzed in this study resulted from investigations carried out at the Highway Engineering Laboratory, Aristotle University of Thessaloniki.

Asphalt Concretes for Very Thin Layers: AC-VTL

- <u>due to its low thickness</u>, requires lesser amount of materials, hence lowers the total cost and **minimizes the quantities of** hard and durable **aggregates** coming **from natural** non-renewable **resources**;
- provides a noise reducing surface (reduction -3 dB to -4 dB in comparison to conventional dense asphalt concrete surface);
- due to its gap-graded gradation, provides a pavement surface with very good surface characteristics, such as very good macrotexture and (with the use of hard and durable aggregates) very good skid resistance;
- provides a pavement surface with a certain drainage ability, hence reduction of water spray;
- no modifications are required by the conventional mixing plants in order to produce AC-VTL.

AC-VTLs were produced using **diabase aggregates** coming from three different quarries located in Greece.

Property	Value
Los Angeles coefficient (%), EN 1097-2	25
Polished Stone value (%), EN 1097-8	55 to 60
Flakiness index (%), EN 933-3	< 25
Sand Equivalent (%), EN 933-8	> 55
Methylene blue value (mg/g), EN 933-9	< 10 (range of values 6.7 to 8.3)

Broporty	Bitumen type				
Property	50/70	SBS Modified			
Penetration (0.1 x mm), EN 1426	64	45			
Softening point (°C), EN 1427	45.6	78.8			
Elastic recovery (%), EN 13398	_	97.5			
Fraas breaking point (°C), EN 12593	- 7.0	- 15.0			
After aging					
Retained penetration	_	84			
Difference in softening point (°C)	_	-2.4			

AC-10-5070	30 specimens laboratory-production bitume	ed using conventional 50 en)/70
AC-10-SBSL	30 specimens laboratory-produced	d using SBS modified bite	umen
AC-10-SBSP	32 specimens plant-produced u	sing SBS modified bitum	ien
🖉 🕅 Politecnico	Nicola Poldo	SIIV ACADEMY	CIII

Nicola Baldo University of Udine

Experimental Data AC-10-5070

Cat. Var.	B _c (%)	% 6.3	% 0.063	IT-CY (MPa)	Va (%)	VMA (%)	Cat. Var.	B _c (%)	% 6.3	% 0.063	IT-CY (MPa)	Va (%)	VMA (%)
1	4.12	31.84	5.35	2939	15.7	23.3	1	4.76	35.62	5.71	2750	11.6	20.8
1	4.12	31.84	5.35	2708	15.9	23.5	1	4.76	35.62	5.71	2749	10.7	20.1
1	4.12	31.84	5.35	2944	15.4	23.0	1	5.39	35.62	5.71	2399	9.3	20.1
1	4.76	31.84	5.35	2445	14.2	23.2	1	5.39	35.62	5.71	2355	10.2	20.8
1	4.76	31.84	5.35	2586	14.2	23.1	1	5.39	35.62	5.71	2336	7.1	18.2
1	4.76	31.84	5.35	2441	14.9	23.8	1	6.02	35.62	5.71	1939	7.4	19.7
1	5.39	31.84	5.35	1962	11.1	21.7	1	6.02	35.62	5.71	1964	8.6	20.7
1	5.39	31.84	5.35	1945	11.3	21.8	1	6.02	35.62	5.71	1956	5.5	18.0
1	5.39	31.84	5.35	1921	11.6	22.1	1	5.35	35.62	5.71	2421	9.4	20.0
1	6.02	31.84	5.35	1775	9.3	21.3	1	5.35	35.62	5.71	2354	10.2	20.8
1	6.02	31.84	5.35	1886	9.4	21.4	1	5.35	35.62	5.71	2342	7.2	18.1
1	6.02	31.84	5.35	1965	9.4	21.4	1	6.00	35.62	5.71	1965	7.4	19.7
1	4.12	35.62	5.71	3276	12.7	20.6	1	6.00	35.62	5.71	1957	8.7	20.7
1	4.12	35.62	5.71	3116	17.1	24.5	1	6.00	35.62	5.71	1948	5.5	18.0
1	4.12	35.62	5.71	3227	12.7	20.6							
1	4.76	35.62	5.71	2760	9.6	19.1							

Nicola Baldo University of Udine

Experimental Data AC-10-SBSL

Cat. Var.	B _c (%)	% 6.3	% 0.063	IT-CY (MPa)	Va (%)	VMA (%)	Cat. Var.	B _c (%)	% 6.3	% 0.063	IT-CY (MPa)	Va (%)	VMA (%)
2	4.41	33.87	5.30	3197	15.6	24.5	2	4.12	31.84	5.60	3356	15.7	23.3
2	4.41	33.87	5.30	3067	17.0	25.8	2	4.12	31.84	5.60	3384	15.3	23.0
2	4.41	33.87	5.30	3278	16.4	25.3	2	4.76	31.84	5.60	3105	14.1	23.1
2	4.79	33.87	5.30	3066	15.6	15.6	2	4.76	31.84	5.60	3085	13.9	23.0
2	4.79	33.87	5.30	3044	16.3	16.3	2	4.76	31.84	5.60	3078	14.2	23.2
2	4.79	33.87	5.30	2931	13.2	13.2	2	5.39	31.84	5.60	2856	11.1	21.7
2	5.11	33.87	5.30	2840	14.4	24.9	2	5.39	31.84	5.60	2854	11.1	21.7
2	5.11	33.87	5.30	2976	13.1	23.8	2	5.39	31.84	5.60	2841	11.2	21.8
2	5.11	33.87	5.30	2873	15.0	25.5	2	6.02	31.84	5.60	2424	8.9	21.1
2	5.48	33.87	5.30	3226	11.9	23.5	2	6.02	31.84	5.60	2451	8.9	21.0
2	5.48	33.87	5.30	2928	13.2	24.6	2	6.02	31.84	5.60	2456	9.4	21.5
2	5.48	33.87	5.30	3093	12.6	24.1	2	6.10	31.84	5.60	2422	7.9	20.4
2	5.86	31.84	5.60	3123	10.9	23.4	2	6.10	31.84	5.60	2438	8.6	21.0
2	5.86	31.84	5.60	3091	10.9	23.5	2	6.10	31.84	5.60	2468	8.6	20.9
2	5.86	31.84	5.60	3358	12.3	24.6							
2	4.12	31.84	5.60	3452	15.6	23.2							

Politecnico di Torino Dipartimento di Ingegneria dell'Ambiente, del Territorio e delle Infrastrutture

Nicola Baldo University of Udine

Experimental Data AC-10-SBSP

Cat. Var.	В _с (%)	% 6.3	% 0.063	IT-CY (MPa)	Va (%)	VMA (%)	Cat. Var.	B _c (%)	% 6.3	% 0.063	IT-CY (MPa)	Va (%)	VMA (%)
3	5.58	33.87	5.63	3382	9.5	18.5	3	5.29	35.00	5.58	3332	13.5	22.2
3	5.58	33.87	5.63	3446	9.3	18.3	3	5.29	35.00	5.58	3388	13.3	21.6
3	5.58	33.87	5.63	3260	9.6	18.7	3	5.29	35.00	5.58	3316	13.6	22.4
3	5.58	33.87	5.63	3617	9.1	18.1	3	5.29	35.00	5.58	3786	13.2	22.6
3	5.27	31.17	5.87	3362	14.1	22.5	3	5.42	32.43	5.37	2862	10.6	20.3
3	5.27	31.17	5.87	3458	13.5	22.2	3	5.42	32.43	5.37	2913	10.5	19.5
3	5.27	31.17	5.87	3421	13.9	22.3	3	5.42	32.43	5.37	2809	10.8	19.3
3	5.27	31.17	5.87	3380	13.9	22.7	3	5.42	32.43	5.37	2896	10.7	19.7
3	5.47	32.02	5.77	2810	10.3	19.5	3	5.15	33.92	5.89	3935	15.2	23.9
3	5.47	32.02	5.77	2842	10.0	18.5	3	5.15	33.92	5.89	4145	14.8	23.2
3	5.47	32.02	5.77	2826	10.1	18.6	3	5.15	33.92	5.89	4197	14.3	22.9
3	5.47	32.02	5.77	2827	10.1	18.6	3	5.15	33.92	5.89	4036	15.0	23.5
3	5.74	33.50	6.12	2655	8.2	16.8	3	5.35	35.77	5.24	3309	12.0	20.5
3	5.74	33.50	6.12	3940	7.1	15.9	3	5.35	35.77	5.24	3296	12.1	21.2
3	5.74	33.50	6.12	3612	7.4	16.1	3	5.40	34.53	5.68	2853	11.1	19.9
3	5.74	33.50	6.12	3448	7.6	16.3	3	5.40	34.53	5.68	2865	11.0	19.9

Nicola Baldo University of Udine

Artificial Neural Network

Transfer Function	Equation	Graph					
Exponential Linear	$\varphi(x) = \begin{cases} \alpha(e^x - 1) & x \le 0 \\ x & x > 0 \end{cases}$						
Hyperbolic Tangent	$\varphi(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$						
Input	Description						
B _C	Bitumen content (by w	eight)					
% 6.3	% passing at 6.3 mm s	sieve					
% 0.063	% passing at 0.063 mm	sieve					
Cat. Var.	Categorical variabl	е					
Output	Description						
IT-CY	Stiffness modulus	; ;					
Va	Air voids content						
VMA	Voids in the mineral aggregate						

Nicola Baldo University of Udine

Hyperparameters Definition

	Hyperparameter	Symbol	Variation Interval
	Neurons in the hidden layer	Ν	{8,, 64}
Network Topology	Transfer Function	act	$\{ELU, Tanh\}$
	Learning Rate	μ	$[10^{-4}, 10^{-2}]$
	Increasing factor	μ_{inc}	$[10^1, 10^3]$
Learning Algorithm	Decreasing factor	μ_{dec}	$[10^{-3}, 10^{-1}]$
	Maximum Learning Rate	μ_{max}	$[10^6, 10^8]$
	Learning Algorithm Iterations	E	{500,, 5000}

Step-by-step Procedure

Dipartimento di Ingegneria dell'Ambiente, del Territorio e delle Infrastrutture

University of Udine

Torino 15th April 2024

k-fold Cross-Validation

k-fold **Cross-Validation** İS а resampling technique used to elaborate an actual model on а limited data sample. It consists in the data sample dividing kin partitions. Each sub-sample is used once as validation set and k-1 times as training set. It was decided to give a k-value equal to 8, consistently with the relevant literature. This procedure is iteratively repeated 8 times; finally, the average of the 8 validation scores is given as general performance of the model.

Iterations 5 2 3 4 6 7 8 1 Train Train Train Train Train Train Test Train Train Test Train Test Train Train Train Train Train Test Train Train Train Train Train Train Test Train Test Train Train Train Train Train Train Train Train Test Train Train Test Train Train Train Train Train Train Train

Validation Scores

Feature	Bounded Domain	Selected Value		
Ν	{8,, 64}	22		
act	{Tanh, ELU}	Tanh		
μ	$[10^{-4}, 10^{-2}]$	2.02×10^{-3}		
μ_{inc}	$[10^1, 10^3]$	1.18×10^2		
μ_{dec}	$[10^{-3}, 10^{-1}]$	1.07×10^{-2}		
μ_{max}	$[10^6, 10^8]$	4.52×10^{7}		
E	{500,, 5000}	2922		

Nicola Baldo University of Udine

Fold	Loss	R-Pea	rson coeff	icient
FOIU	(MSE)	ITSM	Va	VMA
1	0.0172	0.9780	0.9523	0.9374
2	0.0318	0.9654	0.9332	0.9204
3	0.0181	0.9952	0.9413	0.9535
4	0.0273	0.9109	0.9746	0.9630
5	0.0520	0.8698	0.8826	0.8470
6	0.0130	0.9856	0.9863	0.9674
7	0.0209	0.9569	0.9470	0.9440
8	0.0047	0.9731	0.9975	0.9931
	Ave	erage over	olds	
	0.0231	0.9544	0.9519	0.9407

Nicola Baldo University of Udine

Fold	Loss	R-Pea	rson coeff	icient
FOIU	(MSE)	ITSM	Va	VMA
1	0.0172	0.9780	0.9523	0.9374
2	0.0318	0.9654	0.9332	0.9204
3	0.0181	0.9952	0.9413	0.9535
4	0.0273	0.9109	0.9746	0.9630
5	0.0520	0.8698	0.8826	0.8470
6	0.0130	0.9856	0.9863	0.9674
7	0.0209	0.9569	0.9470	0.9440
8	0.0047	0.9731	0.9975	0.9931
	Ave	erage over t	the 8 test fo	olds
	0.0231	0.9544	0.9519	0.9407

Fold	Loss	R-Pea	irson coeff	icient		
ΓΟΙά	(MSE)	ITSM	Va	VMA		1.5
1	0.0172	0.9780	0.9523	0.9374		
2	0.0318	0.9654	0.9332	0.9204		.0269
3	0.0181	0.9952	0.9413	0.9535		$_{ m get+0}^{ m get+0}$
4	0.0273	0.9109	0.9746	0.9630		t*Targ
5	0.0520	0.8698	0.8826	0.8470		=0.924
6	0.0130	0.9856	0.9863	0.9674		6.0- =
7	0.0209	0.9569	0.9470	0.9440	/	0 -1
8	0.0047	0.9731	0.9975	0.9931		-1.5
	Ave		-			
	0.0231	0.9544	0.9519	0.9407		

Remarks case study n.1

- It has been feasible to predict simultaneously Stiffness Modulus, Va and VMA, starting from bitumen content, a couple of grading curve data and "the type of mix" categorical variable.
- The best predictions accuracy has been achieved for the Stiffness Modulus.
- The number of artificial neurons in the hidden layer, as well as the hyperparameters values related to the learning algorithm, resulted different with respect to those suggested by empirical rules.

Case study n.2

Article

Stiffness Data of High-Modulus Asphalt Concretes for Road Pavements: Predictive Modeling by Machine-Learning

Nicola Baldo ^{1,*}^(D), Matteo Miani ¹^(D), Fabio Rondinella ¹^(D), Jan Valentin ²^(D), Pavla Vackcová ² and Evangelos Manthos ³

- ¹ Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, Via del Cotonificio 114, 33100 Udine, Italy; matteo.miani@phd.units.it (M.M.); fabio.rondinella@phd.units.it (F.R.)
- ² Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 166 29 Prague, Czech Republic; jan.valentin@fsv.cvut.cz (J.V.); pavla.vackova@fsv.cvut.cz (P.V.)
- ³ Department of Civil Engineering, University Campus, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; emanthos@civil.auth.gr
- * Correspondence: nicola.baldo@uniud.it; Tel.: +39-0432-558-745

Introduction and Scope

- The goal of this study was to predict, by means of ANNs, the stiffness of High-Modulus Asphalt Concretes (HMAC) on the basis of selected input parameters.
- A set of 38 variants of HMAC mixtures was available.
- All mixtures were characterized by a gradation 0–22 mm and had to fulfill requirements set in Czech technical specifications TP 151.
- Hard paving grade bitumen 20/30, conventional binder 50/70 or PMB 25/55-60 were used.
- Some mix variants contained between 10% and 30% RAP.

Mix	Bitumen Type	tumen ID	Bulk Density	Max Bulk Density	Binder Content	Voids Content	Maximum Strength	Marshall Stability	Marshall Flow	IT-CY 15 °C
			(g/cm ³)	(g/cm ³)	(%)	(%)	kN	kN	(0.1 mm)	(MPa)
VA (T oo			2.547		5.1	2.7	17.1	19.7	71	13,171
VMI 22 with	50/70	M3	2.554	2.617	5.1	2.4	17.2	20.0	55	11,659
30% KA var. 5.1			2.538		5.1	3.0	19.6	21.9	45	13,242
VILCT 00 11			2.538		4.8	2.6	17.4	19.9	58	12,739
VMI 22 with	50/70	M3	2.535	2.607	4.8	2.8	14.8	16.9	47	13,287
30% KA. var. 4.8	ċ		2.539		4.8	2.6	22.7	25.5	61	13,217
VMT 22 with			2.549		4.8	2.0	17.4	20.2	53	13,025
30% RA	50/70	M3	2.539	2.602	4.8	2.4	15.3	17.9	63	14,267
(Froněk)	1000		2.548		4.8	2.1	16.8	19.0	66	13,325
VMT 22 with			2.553		4.6	2.8	20.6	20.7	51	15,871
30% RA	50/70	M3	2.548	2.626	4.6	3.0	18.6	21.0	54	15,666
(Froněk)	200220000		2.548		4.6	3.0	20.2	23.4	50	16,707
VMT 22 with			2.473		4.8	6.3	18.1	19.0	34	12,729
20% RA	50/70	M4	2.495	2.639	4.8	5.4	20.2	21.6	34	12,282
(Froněk-3)		1.00000	2.477		4.8	6.1	21.5	22.3	46	14,101
VMT 22 with			2.397		4.4	4.0	14.2	13.6	48	8666
20% RA	50/70	M4	2.421	2.496	4.4	3.0	13.4	13.4	50	9064
(PKB-A)	247242 • 1221921		2.412		4.4	3.4	12.2	12.4	51	8135
VMT 22 with			2.358		4.6	7.9	12.1	11.4	35	8950
10% RA	50/70	M5	2.351	2 559	4.6	8.1	15.3	14.1	37	9339
(PKB-101)	20		2.355		4.6	8.0	12.8	14.5	34	9311
VMT 22 with			2.341		4.5	8.5	17.1	16.2	90	9203
10% RA	50/70	M5	2.343	2.559	4.5	8.4	17.1	16.1	80	9142
(PKB-102)			2.323		4.5	9.2	15.1	14.2	96	9361

Experimental data set (VMT stands for Vysokým Modulem Tuhosti, i.e., HMAC in Czech)

Nicola Baldo **University of Udine**

Stiffness prediction based on Marshall test results

ipartimento di Ingegneria dell'Ambiente, del Territorio

Nicola Baldo **University of Udine**

The Procedure

Hidden Neuron

Inputs Weights

The k-fold Cross Validation

A set of n observations is randomly split into five nonoverlapping groups. Each of these fifths acts as a validation set (shown in beige), and the remainder as a training set (shown in blue). The test error is estimated by averaging the five resulting MSE estimates.

Nicola Baldo University of Udine

Results

In general, the addition of the empirical mechanical parameters among the predictors of the stiffness modulus improved the prediction accuracy compared to the use of mixes' composition parameters alone, as shown by the model evaluation functions: in particular, the values of the R^2_{adj} parameter, a modified version of R^2 which assesses the effect of adding predictors to a model, increase with the use of MS or MQ, showing that the new independent term improves the model more than would be expected by chance, but the percentage gain in model accuracy is really paltry. In fact, although the percentage variation in MAE between MIX_{SNN} and MS_{SNN} is +23.4%, in terms of R^2_{adj} the gain is only +0.29% and therefore such that it may not justify the use of additional data, such as any results of the Marshall test.

ID	Features	N	φ	$f(\cdot)$	MAE	RMSE	R ²	R ² adj
MIX _{SNN}	5	6	TanH	12.093	209.12	293.56	0.9909	0.9894
MS _{SNN}	6	6	TanH	11.856	160.17	241.54	0.9938	0.9923
MQ _{SNN}	6	8	LogS	12.373	174.91	272.61	0.9922	0.9902

Results

Nicola Baldo University of Udine

Remarks case study n.2

- It has been feasible to fit experimental data of asphalt concretes partially made with RAP.
- The inclusion in the input data of Marshall Stability or Quotient values, allows to improve the prediction accuracy of the Stiffness Modulus.
- For each of the neural models analyzed, the Bayesian optimization procedure has identified a different combination of hidden neurons and transfer functions.

Case study n.3

Article

Mechanical Characterization of Industrial Waste Materials as Mineral Fillers in Asphalt Mixes: Integrated Experimental and Machine Learning Analysis

Nitin Tiwari 1,2,*, Nicola Baldo 3,*, Neelima Satyam 2 and Matteo Miani 3

- ¹ Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
- ² Department of Civil Engineering, Indian Institute of Technology Indore, Indore 452020, India; neelima.satyam@iiti.ac.in
- ³ Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, 33100 Udine, Italy; matteo.miani@phd.units.it
- * Correspondence: tiwari50@purdue.edu (N.T.); nicola.baldo@uniud.it (N.B.)

Introduction

This case study regards the feasibility of using seven different materials as alternative filler instead of ordinary Portland cement (OPC) in road pavement base layers, namely **rice husk ash** (RHA), **brick dust** (BD), **marble dust** (MD), **stone dust** (SD), **fly ash** (FA), **limestone dust** (LD), and **silica fume** (SF).

The experimental data were processed through artificial neural networks (ANNs), using k-fold cross validation resampling technique.

RHA (a), BD (b), MD (c), SD (d), FA (e), OPC (f), LD (g), and SF (h) filler materials.

Nicola Baldo University of Udine

Properties of the investigated mineral fillers.

Test parameter				Mineral F	iller Type			
rest parameter	RHA	BD	MD	SD	FA	OPC	LD	SF
Specific gravity (g/cm ³)	2.02	2.56	2.69	2.69	2.32	3.04	2.65	2.20
MBV (g/kg)	4.72	6.25	4.45	3.67	3.86	3.00	3.75	3.85
German filler (g)	65	40	70	85	75	85	97	94
FM	3.21	5.17	2.12	5.38	3.77	4.96	3.03	1.96
Surface area (m ² /g)	2.31	2.69	4.37	2.70	2.19	1.75	2.70	16.45
PH	10.86	8.67	8.50	12.57	7.30	12.90	10.22	6.98
SiO ₂ (%)	89.67	39.55	0.60	82.37	48.24	21.43	0.48	93.5
CaO (%)	1.88	12.88	55.60	2.79	13.40	66.58	96.57	0.89
Al ₂ O ₃ (%)	1.62	15.71	0.40	8.23	24.15	3.01	0.41	0.08
MgO (%)	0.97	3.29	0.10	1.47	1.46	1.39	0.46	0.82
Fe ₂ O ₃ (%)	1.06	14.05	0.20	5.27	6.48	4.68	0.32	0.50
Particle shape	Honeycombed	Subangular particles	Subangular particles	Angular particles	Rounded	Granular/ subangular particles	Granular particles	Spherically shaped

Nicola Baldo University of Udine

Crushed quartz aggregate properties

Test Parameters	Specified Limit (MoRTH)	Test Results	Test Method
Cleanliness (Dust) (%)	Max 5 %	3	IS 2386 Part I
Bulk Specific gravity (g/cm3)	2-3	2.68	IS 2386 Part III
Percent wear by Los Angeles abrasion (%)	Max 35 %	10.6	IS 2386 Part IV
Soundness loss by sodium sulphate solution (%)	Max 12%	3.4	IS 2386 Part V
Soundness loss by magnesium sulphate solution (%)	Max 18%	3.7	IS 2386 Part V
Flakiness and Elongation Index (%)	Max 35%		IS 2386 Part I
– 20 mm		27.93	
– 10 mm		32.13	
Impact Strength (%)	Max 27%		IS 2386 Part IV
– 20 mm		4.15	
– 10 mm		5.91	
Water Absorption (%)	Max 2%	1.67	IS 2386 Part III

Nicola Baldo University of Udine

Aggregate type, grain size distribution, and bitumen type have been kept constant for all the asphalt concretes investigated in order to assess only the effect of the different filler materials on the physicalmechanical response of the mixes.

Four levels of waste mineral filler have been considered, namely, 4.0%, 5.5%, 7.0%, and 8.5%, by volume of mix; OPC has been used with the same contents as a comparative term.

Marshall compaction and stability, Indirect Tensile Strenght, Cantabro Abrasion Loss, modified Lottman test.

Design gradation curve and MoRTH limits.

Conventional VG-30 bitumen properties.

Test Parameters	Specified Limit (MoRTH)	Test Results	Test Method
Absolute Viscosity at 60°C, poises	2400-3600	2855	IS 1206 (P-2)
Kinematic Viscosity at 135°C cSt, Min	350	392	IS 1206 (P-3)
Flash point Cleveland open cup, °C, Min	250	304	IS 1448 (P-69)
Penetration at 25°C, 100gm, 5sec, 1/10 mm, Min	45	49	IS 1203
Softening Point (R&B), °C, Min	47	48	IS 1205
Matter Soluble in trichloroethylene, % by mass, Min	99	99.45	IS 1216
Viscosity Ratio at 60°C, Max	4.0	1.3	IS 1206 (P-2)
Ductility at 25°C, cm after TFOT Min	40	75	IS 1208
Specific Gravity gm/cc	0.97 -1.02	0.987	IS 1202

Nicola Baldo University of Udine

INDIRECT TENSILE STRENGTH

Nicola Baldo University of Udine

ipartimento di Ingegneria dell'Ambiente, del Territorio e delle Infrastrutture

University of Udine

Artificial Neuron

Inputs Weights

k-fold Cross-Validation

Training Process

partimento di Ingegneria dell'Ambiente, del Territorio delle Infrastrutture

Data Augmentation

- Synthetic data generation
- Unaltered collected information meaning

Nicola Baldo University of Udine

Remarks case study n.3

- WASTE Fillers can replace conventional filler in asphalt concretes.
- k-folds resampling and MAKIMA data-augmentation methods allow to properly train neural models.
- The Artificial Neural Network architecture should be always optimized.

FINAL REMARKS (1/2)

- 1. Performance predictions via Machine Learning represent a contribution to <u>Pavement</u> <u>Engineering Digitalization</u>.
- 2. ANN non-linear fitting methods can positively contribute to the laboratory performance evaluation phase of bituminous mixtures, even for mixes with waste materials included in the composition, thus enforcing the <u>Green Transition</u> of Pavement Engineering.
- 3. Laboratory data consistency is a fundamental requisite to ensure neural models prediction accuracy.
- 4. Prediction accuracy is not based on the complexity of the model, but rather on the optimization of the model.

FINAL REMARKS (2/2)

- 1. SNNs (Shallow Neural Networks) have been shown to solve pretty well any multi-dimensional input-output fitting problem by providing an optimal number of hidden neurons.
- 2. The Bayesian optimization represents an effective approach to identify the optimal SNNs architecture and hyperparameters values.
- 3. The prediction accuracy of a SNNs model is very good, but a physical interpretation of the phenomena cannot be obtained (**BLACK BOX** issue).
- 4. Fatigue or permanent deformation resistance data should be included in the machine learning modeling, to further enhance the performance evaluation phase of asphalt concretes.

Nicola Baldo University of Udine

