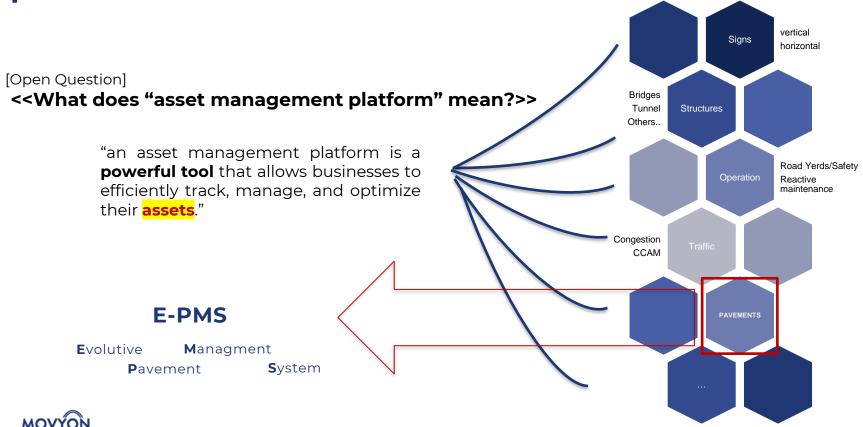
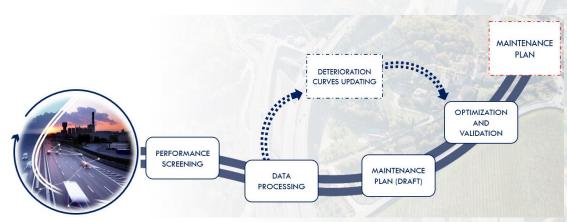
Sustainability evaluation in asset management platforms

Eng. Davide Chiola

Professional Master @Movyon, Autostrade per l'Italia Group



SIIV Academy - ADVANCEMENTS IN ROAD ENGINEERING TOWARDS GREEN AND DIGITAL TRANSITION April 15th 2024 autostrade per l'italia



Sustainability evaluation in asset management platforms

Evolutive Pavement Management System

ASPI E-PMS is an innovative and strategic tool developed by with the technical supervision of which is already in use to define and validate optimized maintenance plans.

Monitoring

High-performance vehicles to collect performance data on the slow lane;

Knowledge

20-years data collection used to define procedures and «local» decay curves

Flexibility

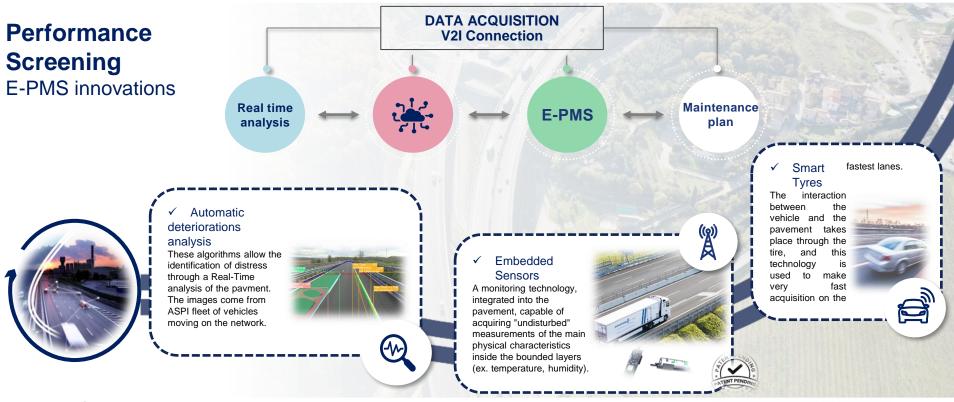
Decay curves can be updated to consider significant variations of traffic spectra, weather conditions and construction characteristics in each traffic section;

Sustainability

Enviromental Asphalt Rating (EAR) intrducted to evaluate different maintenance strategies;

Evolutive [work in progress...]

Real time analysis of data from connected vehicles, fleet of vehicles, embedded sensors


Evolutive Pavement Management System

Evolutive Pavement Management System

5

Evolutive Pavement Management System

٠

Data Processing

Traffic Data Homogeneous sections

- customised procedure to normalise the traffic effects
- a study of traffic spectra to define updated Load Equivalent Factors (LEF)
- traffic data available from tolling system (close network)
 - The platform creates homogeneous sections for each parameter (IRI, CAT, SCI300)
- Bridges have been considered as independent homogeneous sections
- The process adopted in the E-PMS starts from a preliminary clustering in function of the traffic. These data are subsequently analysed through a statistical process

LEF (ESAL/vehic)	Motorway Type	1 st lane	2 nd lane	Motorway Type
5,11	4 lanes – high traffic	68%	32%	4 lanes – high traffic
5,06	3 lanes – high traffic	83%	17%	3 lanes – high traffic
4,94	3 lanes – medium traffic	86%	14%	3 lanes – medium traffic
3,95	2 lanes – low traffic	97%	3%	2 lanes – low traffic

autostrade per l'italia

Evolutive Pavement Management System

Data Processing Deterioration curves

- Prediction models and deterioration curves represent a crucial aspect of any Pavement Management System due to many combined influences of traffic, environment, pavement structure and maintenance strategies adopted;
- For this reason, parametric deterioration curves have been implemented within the E-PMS;
- This allows to customize the platform by setting different parameters in each traffic-section of the entire network.

¹Skid Resistance ²Roughness ^aBearing Capacity $\epsilon_{t,max}^{r} = \mathbf{a} \cdot (SCI300_{r,50})^{\mathbf{b}}$ $\epsilon_{r}^{r} = \mathbf{c} \cdot (SCI300_{r,85})^{\mathbf{b}}$ $E_{r} = \mathbf{c} \cdot (\varepsilon_{t,max}^{r})^{\mathbf{d}}$ $N_{100}^{r} = 0,0795 \cdot \left(\frac{1}{\varepsilon_{t,max}^{r}}\right)^{3,291} \cdot \left(\frac{1}{E_{r}}\right)^{0,854}$

¹ Marchionna, A. P. (1994). Decadimento dell'aderenza sulle pavimentazioni autostradali. Autostrade.

² Regression curve obtained from field data.

³ F. Canestrari, L. I. (2022). Assessing the remaining structural life of motorway pavements at the network level from Traffic Speed Deflectometer measurements. submitted to International Journal of Pavement Engineering.

Evolutive Pavement Management System

Data Processing Deterioration curves

- An example of a homogeneous sections decay curve;
 - The purpose of the decay curves is to estimate the residual service life for each hom.sec., therefore of the entire network;
- Thanks to the use of deterioration curves we can predict how often we need a maintenance activities;
- We can define a scenario according to the quality parameters (skid resistance and roughness);
- For each homogeneous section we can predict the maintenance for a short, medium and long period.

8

Evolutive Pavement Management System

Evolutive Pavement Management System | EAR Index Introduction

Maintenance Plan Maintenance plan definition and optimization

> OPTIMIZATION AND VALIDATION

EAR

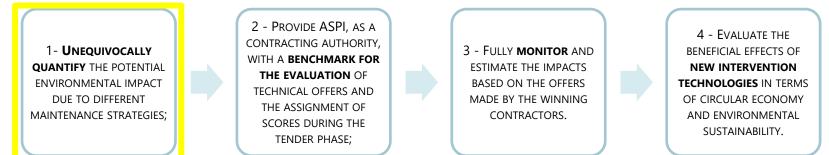
Bering

- Residual service life < trigger value → Analysis of the adjacent sections (Fuzzy tolerance) → Verification of the distance between construction sites
- **Residual service life < trigger value** → Structural anticipation → Analysis of the adjacent sections (Fuzzy tolerance) → Verification of the distance between construction sites
- Residual service life < trigger value → Analysis of the adjacent sections (Fuzzy tolerance) → Verification of the distance between construction sites

• EAR (Environment Asphalt Rating) → EAR is an innovative index for assessing the environmental impact of pavement maintenance operations on the motorway network

Materials and production processes as sustainable as possibile

PRODUC	TION PH	ASE	REALIZATION PHASE			
Extraction of raw material	Transport to the production site	Production	Transport to the worksite	Realization		
A1	A2	A3	A4	A5		

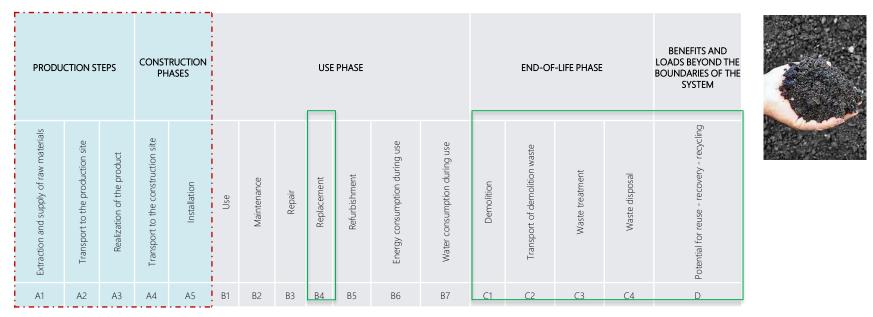

10

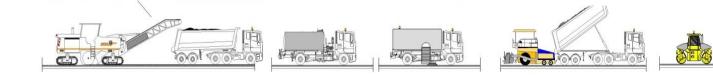
Introduction: SUSTAINABLE DEVELOPMENT FACTORS IN PAVEMENT LIFE-CYCLE

Definition

• The Environmental Asphalt Rating, hereinafter EAR, is an **ENVIRONMENTAL IMPACT INDEX** to be associated with asphalt concrete mixtures used as part of scheduled maintenance plans. This index has been defined with the **aim** of:

- The EAR indicator is a dimensionless number ranging from 0 (zero impact) to infinity
- The EAR is based on the Environmental Product Declaration (EPD) certification:





Definition

MOVÝOŇ

• The approach considered is the so-called "cradle to the gate + other"

Preparation of the laying surface

Asphalt paving

Compaction 13

Definition

• The approach considered is the so-called "cradle to the gate + other"

Environmental impact assessment of 1 tonne of asphalt

	PRODU	CTION ST	ΓEPS		RUCTION ASES				USE	PHASE				END-OF-	LIFE PHASE		LOADS BEYOND THE BOUNDARIES OF THE SYSTEM	
I TECNE	Extraction and supply of raw materials	Transport to the production site	Realization of the product	 Transport to the construction site 	R Installation	es D	8 Maintenance	Repair	Replacement	명 Refurbishment	Energy S consumption during use	Water consumption during use	Demolition	C Transport of demolition waste	0 Waste treatment	A Waste disposal	Detential for reuse - recovery - recycling	
Engineering					,0	• • •	DL	25	51	25	20	27	C1		25	01	5	1

Parameter

GWP

ODP

Absloute

 $6.15 \cdot 10^{1}$

 $6.70 \cdot 10^{-6}$

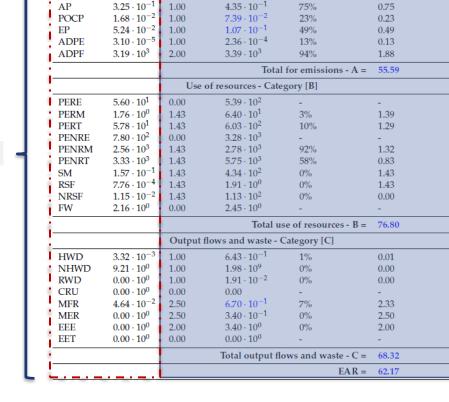
value (vm)

factor (w_f)

3.00

1.00

value (Vn)


 $8.86 \cdot 10^{1}$

 $5.12 \cdot 10^{-1}$

Emissions - Category [A]

Drafting of the EPD

Drafting of the EPD

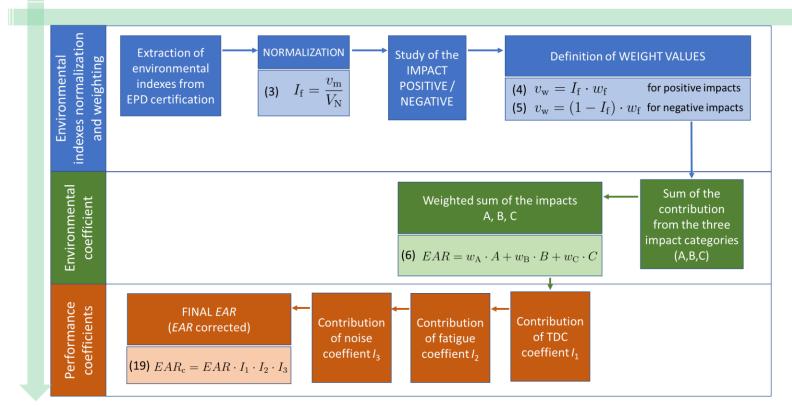
Weighting Normalization Relative impact Weighted value

 $(I_f\%)$

69%

0%

 (\mathbf{v}_w)


2.08

0.00

Chiola D, Cirimele V, Tozzo C, An index for assessing the environmental impact of pavement maintenance operations on the motorway network: the Environmental Asphalt Rating, submitted to MDPI 2023.

Calculation process

Drafting of the EPD

Parameter	Absloute value (v _m)	Weighting factor (w_f)	Normalization value (V _n)	Relative impact (I _f %)	Weighted value (v_w)				
Emissions - Category [A]									
GWP	$6.15 \cdot 10^1$	3.00	$8.86 \cdot 10^{1}$	69%	2.08				
ODP	$6.70 \cdot 10^{-6}$	1.00	$5.12 \cdot 10^{-1}$	0%	0.00				
AP	$3.25 \cdot 10^{-1}$	1.00	$4.35 \cdot 10^{-1}$	75%	0.75				
POCP	$1.68 \cdot 10^{-2}$	1.00	$7.39 \cdot 10^{-2}$	23%	0.23				
EP	$5.24 \cdot 10^{-2}$	1.00	$1.07 \cdot 10^{-1}$	49%	0.49				
ADPE	$3.10 \cdot 10^{-5}$	1.00	$2.36 \cdot 10^{-4}$	13%	0.13				
ADPF	$3.19 \cdot 10^{3}$	2.00	$3.39 \cdot 10^{3}$	94%	1.88				
			Total fo	or emissions - A =	55.59				
		Use of r	esources - Catego	ry [B]					
PERE	$5.60 \cdot 10^{1}$	0.00	$5.39 \cdot 10^{2}$	-	-				
PERM	$1.76 \cdot 10^{0}$	1.43	$6.40 \cdot 10^{1}$	3%	1.39				
PERT	$5.78 \cdot 10^{1}$	1.43	$6.03 \cdot 10^{2}$	10%	1.29				
PENRE	$7.80 \cdot 10^2$	0.00	$3.28 \cdot 10^{3}$	-	-				
PENRM	$2.56 \cdot 10^{3}$	1.43	$2.78 \cdot 10^{3}$	92%	1.32				
PENRT	$3.33 \cdot 10^{3}$	1.43	$5.75 \cdot 10^{3}$	58%	0.83				
SM	$1.57 \cdot 10^{-1}$	1.43	$4.34 \cdot 10^{2}$	0%	1.43				
RSF	$7.76 \cdot 10^{-4}$	1.43	$1.91 \cdot 10^{0}$	0%	1.43				
NRSF	$1.15 \cdot 10^{-2}$	1.43	$1.13 \cdot 10^{2}$	0%	0.00				
FW	$2.16 \cdot 10^{0}$	0.00	$2.45 \cdot 10^0$	-	-				
			Total use	of resources - B =	76.80				
HWD	$3.32 \cdot 10^{-3}$	1.00	$6.43 \cdot 10^{-1}$	1%	0.01				
NHWD	$9.21 \cdot 10^{0}$	1.00	$1.98 \cdot 10^{9}$	0%	0.00				
RWD	$0.00 \cdot 10^0$	1.00	$1.91 \cdot 10^{-2}$	0%	0.00				
CRU	$0.00 \cdot 10^{0}$	0.00	0.00	-	-				
MFR	$4.64 \cdot 10^{-2}$	2.50	$6.70 \cdot 10^{-1}$	7%	2.33				
MER	$0.00 \cdot 10^{0}$	2.50	$3.40 \cdot 10^{-1}$	0%	2.50				
EEE	$0.00 \cdot 10^{0}$	2.00	$3.40 \cdot 10^{0}$	0%	2.00				
EET	$0.00 \cdot 10^0$	0.00	$0.00 \cdot 10^0$	-	-				
			Total output flow	s and waste - C =	68.32				
				EAR =	62.17				

EAR = 0.65 A + 0.25 B + 0.1 C

Performance Corrections

Finally, the EAR index, calculated as described above, must be adjusted based on the expected performance in terms of residual service life, which is evaluated based on the prequalification values (grain size, binder quality, binder %, voids %, ITS...):

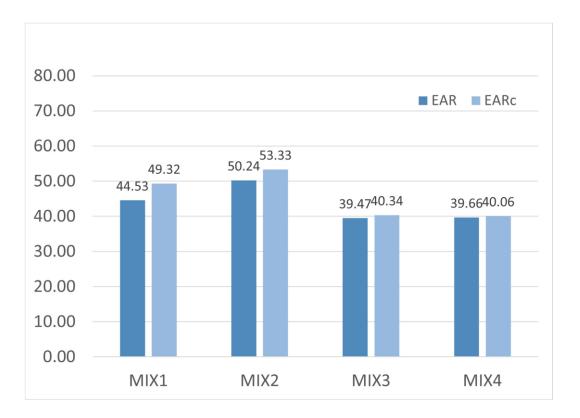
• For open graded mixtures, an approach based on the top-down cracking evolution model was used:

TDC(N) = TDC_{max}
$$e^{-(\frac{a}{n})^{B}}$$
 $a = 1,008 - 0,071 \cdot (eta c.b.)$
B = 0,716 - 0.220 · ITS

• For dense graded mixtures, an estimation of fatigue axes is performed according to the Asphalt Institute report (NCHRP 1-37):

$$\log E^* = 3.750063 + 0.02932 \rho_{200} - 0.001767 (\rho_{200})^2 - 0.002841 \rho_4 - 0.058097 V_a$$

-0.802208 $\left(\frac{V_{beff}}{V_{beff} + V_a}\right) + \frac{3.871977 - 0.0021 \rho_4 + 0.003958 \rho_{38} - 0.000017 (\rho_{38})^2 + 0.005470 \rho_{34}}{1 + e^{(-0.603313 - 0.313351 \log(f) - 0.393532 \log(\eta))}}$


Performance Corrections

For surface mixtures only, emissions are also considered from the noise point of view, calculated using the following model:

$$CPXL = a_1 + a_2 \cdot Log\left(\frac{S}{S_0}\right) + \left[a_3 + a_4 \cdot Log\left(\frac{S}{S_0}\right)\right] \cdot \frac{D_{95}}{D_F} + \left[a_5 + a_6 \cdot Log\left(\frac{S}{S_0}\right)\right] \cdot \frac{V_A}{VMA}$$

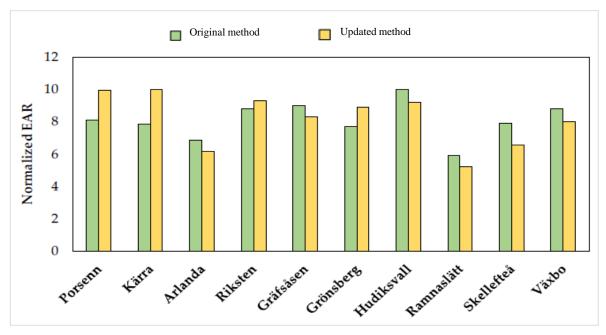
Results

Latest revision of the method

Most recently, the EAR index calculation procedure has been updated considering the latest developments in LCA methods, practices and standards.

- ✓ Consideration of the updated version of Environmental Performance Indicators (Version 2.0).
- Consideration of an updated set of weighting and normalization factors, based on a much larger and publicly available library, to obtain a well-founded and shareable estimation of the EAR index.

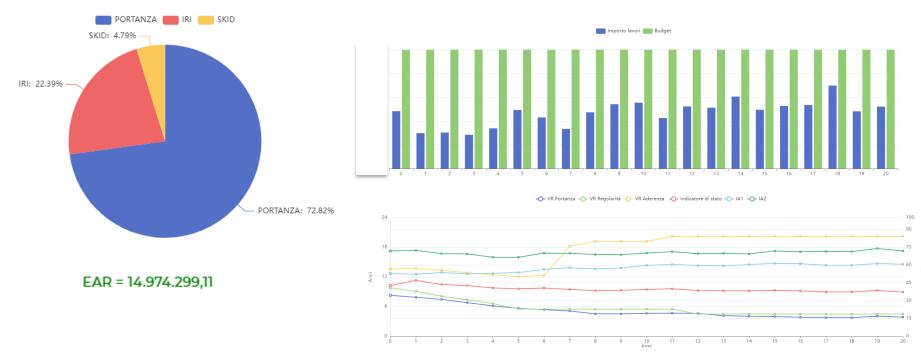
References:


- EN 15804:2012+A2:2019/AC:2021
- Sala S., Cerutti A.K., Pant R.; *Development of a weighting approach for the Environmental Footprint;* Publications Office of the European Union; Luxembourg, 2018.

Indicator	Weighting Factor w_f	Normalization Factor V_n	Normalization Factor Unit of Measurement
	Core environ	mental indicators (A)	
GWP, Total	2.11×10^{-01}	$8.10 imes 10^{+03}$	kg CO2 eq.
ODP	6.31×10^{-02}	5.36×10^{-02}	kg CFC11 eq.
AP	6.20×10^{-02}	$5.56 \times 10^{+01}$	mol H ⁺ eq.
EP, freshwater	2.80×10^{-02}	$1.61 \times 10^{+00}$	kg P eq.
EP, marine	2.96×10^{-02}	$1.95 \times 10^{+01}$	kg N eq.
EP, terrestrial	3.71×10^{-02}	$1.77 \times 10^{+02}$	mol N eq.
POCP	4.78×10^{-02}	$4.06 \times 10^{+01}$	kg NMVOC eq.
ADPE	7.55×10^{-02}	6.37×10^{-02}	kg Sb eq.
ADPF	8.32×10^{-02}	$6.50 \times 10^{+04}$	MJ
WDP	$8.51 imes 10^{-02}$	$1.15 imes10^{+04}$	m ³
	Use of	f resources (B)	
PERE	$0.00 \times 10^{+00}$	$0.00 imes 10^{+00}$	MJ
PERM	$0.00 imes 10^{+00}$	$0.00 imes 10^{+00}$	MJ
PERT	$0.00 \times 10^{+00}$	$0.00 \times 10^{+00}$	MJ
PENRE	$0.00 imes 10^{+00}$	$0.00 imes 10^{+00}$	MJ
PENRM	$0.00 \times 10^{+00}$	$0.00 \times 10^{+00}$	MJ
PENRT	$0.00 imes 10^{+00}$	$0.00 \times 10^{+00}$	MJ
SM	$0.00 \times 10^{+00}$	$0.00 \times 10^{+00}$	kg
RSF	$0.00 imes 10^{+00}$	$0.00 \times 10^{+00}$	MJ
NRSF	$0.00 \times 10^{+00}$	$0.00 \times 10^{+00}$	MJ
FW	$0.00 imes10^{+00}$	$0.00 imes10^{+00}$	m ³
	Output flo	ws and waste (C)	
HWD	$0.00 \times 10^{+00}$	$0.00 imes 10^{+00}$	kg
NHWD	$0.00 imes10^{+00}$	$0.00 imes 10^{+00}$	kg
RWD	$0.00 imes10^{+00}$	$0.00 imes10^{+00}$	kg
CRU	$0.00 \times 10^{+00}$	$0.00 \times 10^{+00}$	kg
MFR	$0.00 \times 10^{+00}$	$0.00 \times 10^{+00}$	kg
MER	$0.00 imes 10^{+00}$	$0.00 imes 10^{+00}$	kg
EE	$0.00 imes10^{+00}$	$0.00 imes10^{+00}$	MJ

Tozzo C., Chiola D., Pierani M., Urbano L., Ricci R., Susani S. Improving the EAR Index for flexible pavement and a preliminary definition of an Environmental Index (ECR) for rigid pavement. MDPI 2024.

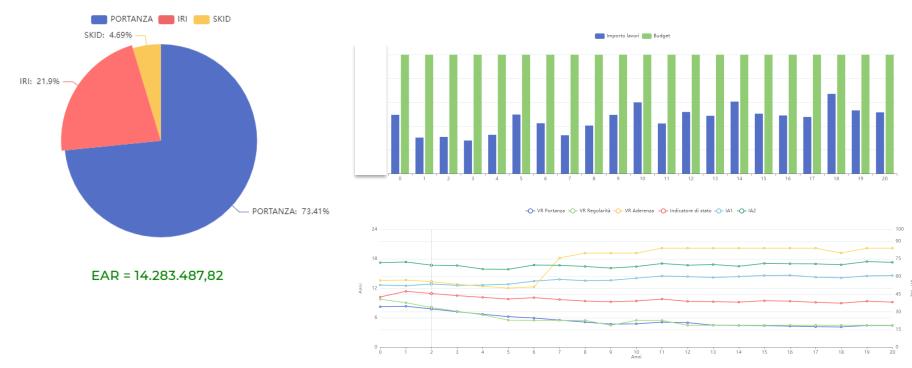
Latest revision of the method: results


Comparison of EAR values calculated with original and updated method (no performance corrections applied).

Note: To efficiently compare the two methods, a second normalization to the EAR values is applied, dividing the EAR value of each mixture by the maximum EAR value obtained from the entire set of mixtures. This is conducted separately for the set of EAR values obtained with the original method and for the set of EAR values obtained with the updated method.

EXAMPLES: Geocomposite

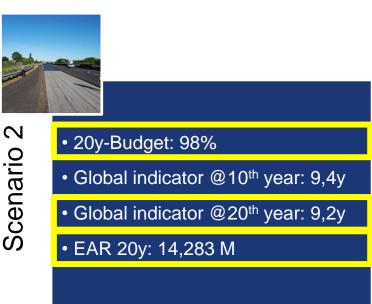
Scenario 1: default boundary conditions + Geocomposite to restore bearing Capacity on the 20% of the Network*



* the Scenario is just a demonstration of the tool and all the data and the graphs reported in this slide are not referred to a real case.

EXAMPLES: Geocomposite

Scenario 2: default boundary conditions + Geocomposite to restore bearing Capacity on the 50% of the Network*



* the Scenario is just a demonstration of the tool and all the data and the graphs reported in this slide are not referred to a real case.

EXAMPLES: Geocomposite Comparison Between SCENARIO 1* (20% Geocomposite to restore Bearing Capacity) **and SCENARIO 2*** (50% Geocomposite to restore Bearing Capacity)

- 20y-Budget: 100%
- Global indicator @10th year: 9,4y
- Global indicator @20th year: 8,9y
- EAR 20y: 14,974 M

* the Scenarios are just a demonstration of the tool and all the data reported in this slide are not referred to a real case.

CONCLUSIONS

- a) AS shown, Asset Management Platforms are spreading to manage different components of the asset
- b) A merging process of different asset management platforms is running to analyse every aspect of the Asset by using one single Territorial-scale Digital Twin,
- c) PMS platforms are used to **support** decision-makers by generating 20-years scenarios
- d) Comparison between different strategies can be made in terms of economic aspects, Global-Performance and **Sustainability**
- e) The ASPI|Movyon E-PMS allows sustainability assessment through the **EAR** Index, which is one of the first examples of sustainability analysis integrated in a PMS
- f) The challenge is to develop new procedures to track the whole process, from tender phase to the execution.

Thank you.

