NC STATE UNIVERSITY

Multi-level FWD Load Analysis for Remaining Life Prediction of Asphalt Pavements

Youngsoo Richard Kim, Ph.D., P.E., F.ASCE Jimmy D. Clark Distinguished University Professor Alumni Distinguished Graduate Professor NC State University

Presented at the Winter School 2022 Moena, Italy Dec. 19, 2022

Outline

- Background information
- Findings from the NCHRP 10-48 project on layer condition assessment for flexible pavements using 40 kN FWD load
- Conclusions from the NCHRP 10-48 study
- Remaining life prediction using multi-level FWD loads
- Conclusions on remaining life prediction

Components of Nondestructive Evaluation

Falling Weight
Deflectometer

- Experiment: Input vs. response
 - Disturb a system at a location and monitor the response at some other points

Dynamic, Nonlinear

- □ Forward Model •
 - Formulation of the Elastic FEM, High responses us. Performance Computing ... system

response and/or

Backward Search or System Identification.

Identification of the system parameters by measurements and calculated responses

Artificial Neural Network, Regression Equations

Falling Weight Deflectometer

FWD Analysis Methods

Backcalculation of Layer Moduli Using Optimization Techniques

- Static, linear elastic: WESDEF, BOUSDEF, ELMOD, EVERCALC, FPEDD1, MODULUS, ADAM, EFROMD2
- Static, quasi nonlinear elastic: MODCOMP3, EMOD, ISSEM4, PADAL
- Static, finite element nonlinear elastic: ILLIPAVE, MICHBACK, FINLAP, 2DB, UZAN
- Dynamic, linear viscoelastic: UT, SCALPOT, UZAN
- Dynamic, linear elastic: SASWOPR, Nazarian
- Dynamic, finite element nonlinear elastic, ANN based: APLCAP
- Deflection Basin Parameter Approach
 - Easy to calculate and practical to implement

NC STATE UNIVERSITY

Deflection Basin Parameters

- Deflection magnitude
- Slope
- Deflection difference
- Radius
- Area
- Deflection ratio

Deflection Basin Parameters *NCHRP 10-48*

Deflection	Formula	Measuring	Reference	Bending Index	$BI = D_0 / a$	BB	Hveem 1954
Parameter		Device		Deflection Ratio	$DR = D_r / D_0$	FWD	Classen 1976
Area	$AREA = \frac{6(D_0 + 2D_{12} + 2D_{24} + D_{36})}{2}$	FWD	Hoffman 1981	Load Spreadability Index	$LSI = (D_{48} / D_{24})xF$	FWD	Wimsatt 1995
				Maximum Deflection	<i>D</i> ₀	BB Dynaflect	Shrivner 1968
Add. Areas	$AREA_2 = \frac{6(D_{12} + 2D_{18} + D_{24})}{D_0}$	FWD		Radius of Curvature	$R = \frac{r^2 *}{(2D_0(D_0 / D_r - 1))}$	CM & BB	Dehlen 1962
	$AREA_{2} = \frac{6(D_{24} + 2D_{36} + D_{48})}{6(D_{24} + 2D_{36} + D_{48})}$			Radius of Influence	$RI = x / D_0$	BB	Ford 1962
	3 D_{0}			Shape Factors	$F_1 = (D_0 - D_{24}) / D_{12}$	FWD	Hoffman 1981
Area Indexes	$AI_{} = \frac{D_0 + D_{12}}{D_0 + D_{12}}$	FWD			$F_2 = (D_{12} - D_{36}) / D_{24}$		
	$2D_0$			Add. Shape Factor	$F_3 = (D_{24} - D_{48}) / D_{36}$	FWD	
	$AI_2 = \frac{D_{12} + D_{24}}{D_{12} + D_{24}}$			Slope of Deflection	$SD = \tan^{-1} \left[\left(D_0 - D_r \right) / r \right]$	BB	Kung 1967
	$^{2} 2D_{0}$			Spreadability	$\sum_{C} 25(D_0 + D_{12} + D_{24} + D_{36})$	Dynaflect	Vaswani 1971
	$AI_3 = \frac{D_{24} + D_{36}}{2R}$				$S = \frac{D_0}{D_0}$	RR FWD	
	$2D_0$			Structural Strength Index	$SSI = A_x / (X_{\min} x E_{\min})$	FWD	Jung 1992
	$AI_4 = \frac{D_{36} + D_{48}}{D}$			Structural Integrity Index	$SII = A_x / (X_s x E_m)$	FWD	Jung 1992
Area Under Pavement Profile	$AUPP = \frac{5D_0 - 2D_{12} - 2D_{24} - D_{36}}{2}$	FWD	Hill & Thompson	Surface Curvature Index	$SCI = D_0 - D_{12}$	BB RR Dynaflect FWD	Shrivner 1968
Base Curvature Index	$\frac{2}{RCI - D - D - 0r}$	Dynaflect	Peterson 1972	Tangent Slope	$TS = (D_0 - d_x) / x$	FWD	Stock 1984
	$BCI = D_{48} - D_{48}$	FWD					
Base Damage Index	$BDI = D_{12} - D_{24}$	RR & FWD					

Stress Bulb in Pavements

Layer Condition Assessment Using FWD NCHRP 10-48 Project

Synthetic Database

- ABAQUS axisymmetric, dynamic, linear and nonlinear elastic finite element analysis with UMAT
- Linear elastic database: 10,000 pavements
- Nonlinear elastic database: 14,000 pavements
- U Wide range of layer moduli
- Thickness ranges from DataPave (LTPP database)

Nonlinear Elastic Model

Uzan's universal model

$$E = K_1(\theta)^{K_2} (\sigma_d)^{K_3}$$

- > Granular materials: K_1 , K_2 , K_3 are all non-zero
- > Cohesive materials: $K_2 = 0$
- > Linear elastic materials: $K_2 = K_3 = 0$

Nonlinear model coefficients from Santha, Thompson, and Garg

Layer Condition Indicators

Pavement	Layer	Layer Condition	Condition Indicator
	Asphalt Layer	Cracking, Stripping	ε _{ac} , Ε _{ac}
Aggregate	Aggregate Base	Rutting	BDI, \mathcal{E}_{abc}
Pavement	Subgrade	Rutting	BCI, SSR, \mathcal{E}_{sg} , E_{sg}
	Stiff Layer	Depth	Depth
	Asphalt Layer	Cracking, Stripping	ε _{ac} , Ε _{ac}
Full Depth Pavement	Subgrade	Strength (Rutting Potential)	BDI, BCI, SSR, \mathcal{E}_{sg} , E $_{sg}$
	Stiff Layer	Depth	Depth

Xu, B., S.R. Ranjithan, and Y.R. Kim (2002). New Relationships between Falling Weight Deflectometer Deflections and Asphalt Pavement Layer Condition Indicators, <u>Transportation Research Record</u>, 1806, 48-56.

Xu, B., S.R. Ranjithan, and Y.R. Kim (2002). "New Condition Assessment Procedure for Asphalt Pavement Layers, Using Falling Weight Deflectometer Deflections," <u>Transportation Research Record</u>, 1806, 57-69.

Asphalt Modulus As a Function of SCI

ε_{ac} As a Function of BDI

ε_{sg} and ε_{abc} As a Function of BDI

NC STATE UNIVERSITY

Predictive Equations for Condition Indicators

Aggregate Base Pavement							
Hac <u><</u> 6 inches	Hac <u>></u> 6 inches						
$\log(E_{ac}) = -1.7718 * \log(SC)$	$CI) + 0.8395 * \log(BDI)$						
$-2.5124*\log(H)$	$(H_{ac}) + 0.0756 * H_{ac} + 4.8888$						
$\log(\varepsilon_{ac}) = 0.7798 * \log(SCI) + 0.2279 * \log(BDI)$	$\log(\varepsilon_{ac}) = 0.3898 * \log(SCI) + 0.5930 * \log(BDI)$						
$+0.5736 * \log(H_{ac}) + 0.0410 * \log(H_{abc}) + 1.1604$	$+0.6935 * \log(H_{ac}) - 0.0328 * H_{ac} + 1.3347$						
$\log(\varepsilon_{abc}) = 0.7357 * \log(SCI) + 0.1043 * \log(BDI)$	$\log(\varepsilon_{abc}) = 0.4976 * \log(SCI) + 0.2910 * \log(BDI)$						
$+0.1240 * \log(H_{ac}) + 0.0648 * \log(H_{abc}) + 2.073$	$+0.5316*\log(H_{ac}) - 0.0442*H_{ac} + 2.1346$						
$\log(\varepsilon_{sg}) = 0.8835 * \log(BDI) + 0.1526 * \log(BCI)$	$\log(\mathcal{E}_{sg}) = 0.2811 * \log(BDI) + 0.6788 * \log(BCI)$						
$-0.0995 * \log(H_{ac}) - 0.0185 * H_{abc} + 2.2461$	$-0.0135 * \log(H_{ac}) - 0.0123 * H_{abc} + 2.2083$						
Full Depth	Pavement						
$\log(E_{ac}) = -1.0831 * \log($	$(SCI) - 2.6210 * \log(H_{ac})$						
$+ 0.0482 * H_{ac} + 5.2961$							
$\log(\varepsilon_{ac}) = 0.9977 * \log(BDI) + 1.7142$							
$\log(\varepsilon_{sg}) = 0.9823 * \log(\varepsilon_{sg})$	(BDI) + 2.1460						

Case Studies

- Danish Road Test Machine (RTM) pavement with known tensile strain at the bottom of AC layer
- Cold Regions Research & Engineering Laboratory (CRREL) pavement with known compressive strains in aggregate base and subgrade
- □ LTPP SPS pavements with deflections measured at different seasons
- □ MnROAD pavements with various fatigue cracking and rutting performance
- Flexible pavements in Davidson County, NC with measured CBR for subgrade
- US 264 pavements in Hyde Country, NC with DCP test results (CBR_{abc} = 60-80, very weak subgrade)

NC STATE UNIVERSITY

ε_{ac} Prediction *RTM*

Load	D ₀	D ₁₂	D ₂₄	H _{ac}	H _{abc}	SCI	BDI	Measured	Predicted
(lbs)	(mils)	(mils)	(mils)	(in.)	(in.)	(mils)	(mils)	ε _{ac}	ε _{ac} (% error)
8,755	22.4	13.0	4.2	3.3	5.5	9.6	9.0	282 με	289 με (2%)

Compressive Strain Prediction in Unbound Layers

CRREL Pavement

19

LTPP SPS Pavements

State Code	SHRP ID	H _{ac} (in.)	H _{abc} (in.)	Asphalt Type	Climate Region
AL (01)	0101	6.6	7.9	AC-20	Wet-No Freeze
AL (01)	0102	3.9	11.9	AC-20	Wet-No Freeze
VA (51)	0113	4.0	13.9	AC-20	Wet-No Freeze
VA (51)	0114	6.8	17.9	AC-20	Wet-No Freeze
DE (10)	0102	5.5	50.8	AC-20	Wet-Freeze
AZ (04)	0113	4.2	7.5	AC-30	Dry-No Freeze
AZ (04)	0114	7.1	12.0	AC-30	Dry-No Freeze
NV (32)	0101	7.1	31.3	AC-20	Dry-Freeze

E_{ac} from Regression Eqn. and MODULUS 5.1

21

NC STATE UNIVERSITY

E_{ac} vs. Temp. from Regression Eqn. and MODULUS 5.1 Wet-No Freeze Region

NC STATE UNIVERSITY

Eac vs. Temp. from Regression Eqn. and MODULUS 5.1 **Other Regions**

ε_{ac} for Cracking Indicator MnROAD

24

ε_{abc} for Rutting Indicator MnROAD

E_{sg} vs. CBR Davidson County, NC

Unbound Layer Condition Evaluation Criteria

Pavement Type	Layer	Indicator*	Criteria
	Paca	BDI	<i>BDI <u>></u> 5.8 mils</i>
	Dase	ε _{abc}	ε _{abc} <u>></u> 720 micro.
Aggregate Base		BCI	<i>BCl</i> <u>></u> 3.2 mils
Pavement	Subgrade	ε _{sg}	ε _{sg} <u>></u> 620 micro.
		SSR	<i>SSR</i> ≥ 0.4
		E_{sg}	E _{sg} <u><</u> 7 ksi
		BDI	<i>BDI</i> <u>></u> 3.4 mils
		BCI	<i>BCl</i> <u>></u> 3 mils
Full-Depth Pavement	Subgrade	ε _{sg}	ε _{sg} ≥ 470 micro.
		SSR	SSR <u>></u> 0.38
		$E_{ m sg}$	E _{sg} ≤ 7 ksi

Note: *After structural adjustment

BDI and ε_{abc} for US 264

BCI and ε_{sg} for US 264

29

SSR and ε_{sg} for US 264

Conclusions from the NCHRP 10-48 Study

- AC moduli predicted by the NCHRP 10-48 algorithms are slightly higher than those predicted from Modulus 5.1 based on linear, static analysis.
- AC moduli predicted by the NCHRP 10-48 algorithms show much more consistent relationships with the measured mid-depth temperatures than those predicted from Modulus 5.1.
- The predicted critical strains from NCHRP 10-48 algorithms match reasonably well with the measured values in CRREL and RTM pavements, except the compressive strain on the top of the aggregate base layer.
- In general, the layer condition indicators predicted from deflection basin parameters and regression equations that were developed from NCHRP 10-48 predict the layer conditions of the selected flexible pavements reasonably well.

Remaining Life Prediction Using Multi-Level FWD Loads

Same Overlay Design?

Objectives

Develop a mechanistic-empirical analysis method for predicting remaining life of pavements using FWD multi-load level deflection data.

Normalized Deflection for Nonlinearity Check

Stress-Dependent Behavior of Subgrade Soils

Stress-Dependent Behavior of Aggregate Base

Synthetic Database for Remaining Life

Dynamic, nonlinear elastic finite element analysis using ABAQUS

- Universal soil model with aggregate properties from Garg and Thompson (1998) and subgrade properties from Santha (1994)
- □ 40, 53.3, and 66.7 kN (9, 12, and 15 kips) of FWD load
- 2,000 and 8,000 cases for full-depth (FD) and aggregate base (AB) pavements, respectively
- Pavement responses
 - Tensile strain at the bottom of AC layer for fatigue cracking
 - Vertical compressive strains in the AC layer, on top of the base layer, and on top of the subgrade for rutting

Parametric Sensitivity Analysis – AB Pavement

Distress Type	Critical Response	DBP's	R2
		BDI	0.9808
Entique Cracking	Tensile Strain at Bottom of	AUPP	0.9319
-aligue Clacking	AC layer	BCI	0.9302
		SCI	0.8458
		SCI	0.911
	Average Compressive Strain	AUPP	0.7476
	in AC layer	BDI	0.5206
		BCI	0.4182
		BDI	0.9675
	Comprossive Strain on Tan of	BCI	0.908
Putting	Base Layer	AUPP	0.8824
Ruung		SCI	0.783
		D ₃₆ -D ₆₀	0.5155
		BCI	0.7461
	Comprossive Strain on Tan of	BDI	0.7157
	Subgrade	D ₃₆ -D ₆₀	0.624
		SCI	0.532
		AUPP	0.4977

NC STATE UNIVERSITY

Predictive Equations for AC Modulus and Critical Strains

Aggregate Base Pavement (Multi-Level FWD Load)

 $\log(E_{ac}) = -1.183 \log(H_{ac}) - 1.103 \log(SCI) + 5.096$

 $\log(\varepsilon_{ac}) = 1.078 \log(BDI) + 0.180 \log(H_{ac}) + 2.772$

 $\log(\varepsilon_{cac}) = 1.076 \log(SCI) + 1.122 \log(H_{ac}) + 0.315$

 $\log(\varepsilon_{abc}) = 0.938 \log(BDI) - 0.079 \log(H_{ac}) + 0.045 \log(H_{base}) + 3.826$

 $\log(\varepsilon_{sq}) = 1.017 \log(BCI) - 0.042 \log(H_{ac}) - 0.494 \log(H_{base}) + 5.072$

Pavement Performance Models

Fatigue Cracking (Asphalt Institute)

$$N_f = 0.0796\varepsilon_t^{-3.291} \left| E^* \right|^{-0.854} P^{-0.3}$$

Rutting (VESYS Model)

$$RD(N) = \sum_{i=1}^{n} \left[\int_{0}^{N} \mu_{i} N^{-\alpha_{i}} dN \int_{d_{i-1}}^{d_{i}} \varepsilon_{c}(z) dz \right] = \sum_{i=1}^{n} \left[\frac{\mu_{i} N^{1-\alpha_{i}}}{1-\alpha_{i}} \int_{d_{i-1}}^{d_{i}} \varepsilon_{c}(z) dz \right]$$

Traffic Consideration

- The LTPP database contains the number of axles corresponding to a particular axle load for a given period.
- Estimate the Equivalent Axle Load Factor (EALF) for each load level based on the results of AASHTO Road.
- □ Determine the Equivalent Single Axle Load (ESAL) for the axle load of interest during the given period. => $P_{i,j}$

Temperature Consideration

- Temperature correction procedures for FWD deflections are based on a 40 kN (9 kip) load level.
- Deflections under multi-level FWD loads were measured from US 264 at different times of day and different seasons.
- The slopes of deflection-AC mid-depth temperature in semi-log scale are relatively the same at all load levels.
- The temperature correction procedure for FWD deflections developed by Lukanen et al. (2000) using LTPP data was adopted.

Remaining Life Prediction Method

- Cumulative damage concept based on Miner's hypothesis
- □ Damage factor = damage per pass caused to a specific pavement system by the load in question $\log(E_{res}) = -1.183 \log(H_{res}) - 1.103 \log(SCI) + 5.096$

$$DF_{i} = \frac{1}{N_{f,i}} \longrightarrow N_{f} = 0.0796\varepsilon_{t}^{-3.291} |E^{*}|^{-0.854} P^{-0.3}$$

Total damage, S

S

age, S

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} \left(P_{i,j} \times DF_{i,j} \right) \times Y$$

$$\log(\varepsilon_{ac}) = 1.078 \log(BDI) + 0.180 \log(H_{ac}) + 2.772$$

where $P_{i,j}$ = number of repetitions of the *i*th load group during the *j*th season, $DF_{i,j}$ = damage factor due to the *i*th load group during the *j*th season, Y = number of years, and

n, m = number of load groups and seasons, respectively.

Verification

□ LTPP sections from the Seasonal Monitoring Program (SMP)

□ Wet freeze and wet no-freeze regions

Data include:

- Temperature measurements within the AC layer
- Traffic monitoring data
- Multiload level FWD deflection data
- Distress survey results

Characteristics of LTPP SMP Sections

Stata	SHRP ID	RP Thickness (mm)		Material Type			
Otate		AC	Base	Subbase	Base	Subbase	Subgrade
NC (37) ¹	1028	266.7	139.7	-	Silty Sand	-	SM
TX (48) ¹	1077	129.5	264.2	-	Cr. Stone	-	ML
TX (48) ¹	1068	276.9	152.4	203.2	Cr. Stone	Lime-Treated Soil	CL
TX (48) ¹	1060	190.5	312.4	152.4	Cr. Stone	Lime-Treated Soil	SM
CT (9) ²	1803	182.9	304.8	-	Gravel	-	ML
MA (25) ²	1002	198.1	101.6	213.4	Cr. Gravel	Soil Aggregate	SP
MN (27) ²	6251	188.0	259.1	-	Gravel	-	SP
NH (33) ²	1001	213.4	490.2	365.8	Gravel	Soil Aggregate	SP
OK (40) ²	4165	68.6	137.2	-	HMAC	-	SM

¹Wet no freeze region; ²Wet freeze region

Extent of Fatigue Cracking

Fatigue Cracking Prediction

Wet-No Freeze

Fatigue Cracking Prediction

Wet Freeze – Severe Cracking

NC STATE UNIVERSITY

Fatigue Cracking Prediction

Wet Freeze – Nominal and Moderate Cracking

0

NC STATE UNIVERSITY

VESYS Rutting Parameters

Park 2000, Kenis 1997

Layer	Rutting Parameter	Temperature (°C)					
		15.5	25.6	30.0	35.0		
Asphalt Concrete	α	0.75	0.74	0.73	0.72		
	μ	0.30	0.31	0.32	0.34		
Paca	α	0.75	0.75	0.75	0.75		
Base	μ	0.28	0.28	0.28	0.28		
Subgrade	α	0.75	0.75	0.75	0.75		
	μ	0.02	0.02	0.02	0.02		

Predicted and Measured Rut Depths

Conclusions

- The study indicated that the deflection ratio obtained from multi-load level deflections could be used to predict the stress state dependency of the base/subgrade materials. The AC layer modulus and the tensile strain at the bottom of the AC layer were found to be good indicators for the condition of AC layer.
- The procedures for remaining life prediction using FWD multiload level deflections and cumulative damage concept are developed for flexible pavements.
- The performance of fatigue cracking can be predicted using the proposed procedure except for pavements with high and rapidly increasing cracking in wet freeze regions. Such trends may be due to the environment-induced distresses such as low temperature cracking or permanent deformation of unbound layers during the spring.
- Predicted rut depths using single load and multiload level deflections show reasonable agreement with measured rut depths over a wide range of rutting potential. The procedure using single load level deflections consistently underpredicts the rut depths.

NC STATE

Thank you

