SAFETY EFFECTS OF SKEWED INTERSECTIONS

PROF. ALFREDO GARCÍA

UNIVERSIDAD POLITÉCNICA DE VALENCIA
DEPARTAMENTO DE TRANSPORTES
ESPAÑA

Catania (Italia)
CONTENTS

- INTRODUCTION
- FIELD STUDY
- APPLICATIONS
- CONCLUSIONS
- CURRENT RESEARCH
- PROPOSALS
INTRODUCTION

- FIELD OF VISION
- MOBILITY
- VISION OBSTRUCTION
- DRIVERS’ LATERAL VISION
- A VEHICLE MAY BE LOCATED IN THE BLIND SPOT

- HUMAN FACTORS
- AUXILIARY DRIVING ELEMENTS
- CONFLICTIVE ROAD SITUATIONS
- SAFETY EFFECTS
INTRODUCTION

- HUMAN FACTORS:
 - FIELD OF VISION: $\geq 120^\circ$ (EU)
 - VISUAL OBSTRUCTIONS:
 - VEHICLE’ BODYWORK
 - EXTERNAL ELEMENTS: TREES, BUILDINGS,...
 - ELDERLY DRIVERS:
 - REDUCED VISUAL ACUITY
 - REDUCED FIELD OF VISION
 - LOSS OF REFLEXES
 - LOSS OF LIMB MOBILITY:

ROAD DESIGNERS MUST ADAPT INFRAESTRUCTURES TO THEIR CAPABILITIES
INTRODUCTION

- AUXILIARY DRIVING ELEMENTS FOR INDIRECT VISION:
 - MIRROR SYSTEM
 - CAMERA-MONITOR SYSTEM
 - OBSTACLE DETECTION SYSTEM
 ≥ 11°
INTRODUCTION

- CONFLICTIVE ROAD SITUATIONS:
 - SKEWED INTERSECTIONS
 - MERGING AREAS
 - LANE CHANGING
INTRODUCTION

- **SKEWED INTERSECTIONS:**

 - **LEFT SKEWED INTERSECTION**
 - **RIGHT SKEWED INTERSECTION**
INTRODUCTION

- SKEWED INTERSECTIONS:
 - LEFT SKEWED INTERSECTION
 - RIGHT SKEWED INTERSECTION

MAIN ROAD

GUIDELINES: $\phi \geq 60^\circ$
INTRODUCTION

- **SKEWED INTERSECTIONS:**

- **Right-angle intersections with oblique-angle crossing**

 There are skewed intersections with right-angle crossing

 There are right-angle intersections with oblique-angle crossing
INTRODUCTION

- MERGING AREAS:
SAFETY EFFECTS:

- LITTLE INFORMATION IS AVAILABLE:
 - HANNA et al. (1976):
 - Y intersections had accident rates ≈50% higher than T inters.
 - MCCOY et al. (1994):
 - Accidents increase with increasing skew angle
 - KULMALA (1995):
 - Acute and obtuse skew angles affected safety differently
 - GATTIS and LOW (1997):
 - Vehicles with opaque bodywork at left-skewed intersections: maximum obliquity angle of 15°
 - HARWOOD et al. (1999):
 - Selected AMF for intersection skew angle
 - SON et al. (2002):
 - Right lateral visibility (B-pillar) at left-skewed intersections: obliquities greater than 20° are excessive
 - ARNDT and TROUTBECK (2005):
 - An increase in observation angle will increase accident rates
FIELD STUDY

- EFFECTIVE ANGLES OF VISION THROUGH REAR-VIEW MIRRORS:
 - MEASURING DEVICE
 - RESULTS

- DESIGN VEHICLE:
 - REPRESENTATIVE DIMENSIONS
FIELD STUDY

- MEASURING DEVICE:
FIELD STUDY

RESULTS:

<table>
<thead>
<tr>
<th>VISION ANGLES THROUGH REAR-VIEW MIRRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision Angle (°)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>40,0</td>
</tr>
<tr>
<td>35,0</td>
</tr>
<tr>
<td>30,0</td>
</tr>
<tr>
<td>25,0</td>
</tr>
<tr>
<td>20,0</td>
</tr>
<tr>
<td>15,0</td>
</tr>
<tr>
<td>10,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rear-View Mirror and Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF/FW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESIGN ANGLES</th>
<th>LEFT MIRROR</th>
<th>RIGHT MIRROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKWARD POSITION</td>
<td>16°</td>
<td>13°</td>
</tr>
<tr>
<td>COMFORTABLE POSITION</td>
<td>20°</td>
<td>16°</td>
</tr>
</tbody>
</table>

Average Angles

Maximum Angles

Minimum Angles

10th Percentile Angles
FIELD STUDY

- DESIGN VEHICLE – DIMENSIONS:

 HEAD TURN ≈ 50°

 FIELD OF VISION SEMI-ANGLE = 60°

 DIRECT FIELD OF VISION = 220°
APPLICATIONS

- SKEWED INTERSECTIONS
- MERGING AREAS
APPLICATIONS

SKEWED INTERSECTIONS:

RIGHT SKEWED INTERSECTIONS:
• DEVIATIONS BELOW 20° ARE ACCEPTABLE

LEFT SKEWED INTERSECTIONS:
• THE PREVIOUS RECOMMENDATIONS MUST PREVAIL:
 • VEHICLES WITH LATERAL OPAQUE BODYWORKS
APPLICATIONS

- MERGING AREAS:

 MERGING ANGLE $\leq 7^\circ$
CONTENTS

- INTRODUCTION
- FIELD STUDY
- APPLICATIONS
- CONCLUSIONS
- CURRENT RESEARCH
- PROPOSALS
CONTENTS

- INTRODUCTION
- FIELD STUDY
- APPLICATIONS
- CONCLUSIONS
- CURRENT RESEARCH
- PROPOSALS
CURRENT RESEARCH

NEW KINEMATIC MODEL THAT BETTER REPRESENTS THE PROCESS OF MERGING:

- MAIN AND MERGING ROAD GEOMETRY
- RELATIVE KINEMATICS OF THE VEHICLES:
 - Trajectories
 - Speeds
 - Accelerations/Decelerations
- DRIVER SCANNING BEHAVIOR:
 - Eyes fixed (Peripheral vision only)
 - Eyes only scan (Left/Right, no head motion)
 - Eye/Head scan (Head rotates but no change in position)
 - Active scan (Head moves around left/right and forward/backward)
- MOVEMENT OF THE SIGHT TRIANGLES
CURRENT RESEARCH

- TRACKING VEHICLE/DRIVER BEHAVIOR:
 - OBSERVATION
CURRENT RESEARCH

- TRACKING VEHICLE/DRIVER BEHAVIOR:
 - RESTITUTION MODEL
CURRENT RESEARCH

- OBSERVED TRAJECTORIES:
 - PARALLEL
 - TANGENT
 - OPEN
 - CUTTING
CURRENT RESEARCH

- TRAJECTORY: CUTTING
- SCANNING: REAR-VIEW MIRROR
CURRENT RESEARCH

- TRAJECTORY: TANGENT
- SCANNING: REAR-VIEW MIRROR
CURRENT RESEARCH

- TRAJECTORY: TANGENT
- SCANNING: HEAD MOTION
CURRENT RESEARCH

- TRAJECTORY: PARALLEL
- SCANNING: HEAD MOTION
CURRENT RESEARCH

- **TRAJECTORY**: OPENED, BUT FINALLY CUTTING
- **SCANNING**: HEAD MOTION AND REAR-VIEW MIRROR
CONTENTS

- INTRODUCTION
- FIELD STUDY
- APPLICATIONS
- CONCLUSIONS
- CURRENT RESEARCH
- PROPOSALS
PROPOSALS

ALTERNATIVE 1

ALTERNATIVE 2
FUTURE

- STRATEGIC GEOMETRIC DESIGN RESEARCH NEEDS (PLAN from AASHTO and TRB):
 - ONE OF THE PRIORITY RESEARCH TOPICS:
 - “Safety Effects of Intersection Skew Angle”
 - RESEARCH OBJECTIVE:
 - To establish quantitative relationships between intersection skew angle and safety, and
 - To use those relationships to consider the need for revision of current geometric design policies concerning intersection skew angle