

#### Bhagwant N. Persaud

Ryerson University Toronto, Canada





Università degli Studi di Palermo Società Italiana Infrastrutture Viarie



Dipartimento Ingegneria Infrastrutture Viarie

## **Overview of lecture**



#### Evolution of road infrastructure safety management

- □ Stakeholders interest
- □ Practical solutions
- □ Research revolution

#### Current resolution initiatives

- □ Highway Safety Manual
- AASHTO strategic highway safety plan
  - Applied safety evaluation research
- Future directions

## **Evolution of road safety management**

- Pre-1950's: emphasis on providing mobility
- 1950: increasing importance of congestion management (1<sup>st</sup> edition of the Highway Capacity Manual)
- 1960's: Increasing interest of administrators: Start of revolutionary practical resolutions
  - Guide-rail, barriers and crash-cushions
    - Reduced severity, but increased hits
  - □ Breakaway-poles eliminate severe accidents
    - but also reduce non-severe ones!





### Evolution of road safety management, ctd.

- Early 1980's: Start of the knowledge revolution
  - Recognition of problems with existing knowledge on safety implications of roadway improvements
    - Regression-to-mean in before after studies safety benefits overestimated
    - Knowledge from cross-section studies -- safety benefits tend to be underestimated
    - Better methods for before-after and cross-section studies
    - **5** papers on safety analysis submitted to TRB in 1985.

#### Mid-1980's: From congestion management to safety management

□ Managing congestion to improve safety

## Is it better to be .....

DEAD?

### OR ALIVE AND STUCK IN TRAFFIC??



## Evolution .... ctd.

- Mid-1980's to mid-1990's: Dramatic increase in road safety research, researchers and practitioners
  - □ Mostly ad hoc research
  - □ Road Safety Auditor as a profession
  - □ Safety considerations in design, construction and maintenance
- 1997: Ezra Hauer's landmark book on observational beforeafter studies
- Late 1990's: Formal recognition by administrators of need for science based road safety management;
  - □ Increase in research directed to facilitate the management process
    - Identify locations for detailed safety investigation
    - Detailed safety investigations of sites and development of remedies
    - Prioritization and implementation of remedies
    - Evaluation of remedies

## Evolution of road safety management, ctd.

- TURN OF THE CENTURY: Formalizing safety considerations in the design, construction and maintenance processes
  - □ Explicit consideration of safety in design guides and manuals
  - □ Interactive Highway Safety Design Model
  - □ Safety audits
    - Pre-construction
    - During construction
    - Post-construction
    - During maintenance

#### 2000's:

- □ AASHTO Strategic Highway Safety Plan
- Highway Safety Manual
- PIARC Road Safety Manual

 2007: 80 papers on highway safety analysis submitted to Transportation Research Board Annual Meeting
 8

# THE HIGHWAY SAFETY MANUAL

 a new era in highway safety analysis

## **HSM Purpose**

To provide the best factual information and tools in a useful form to facilitate roadway planning, design, operations, and maintenance decisions based on explicit consideration of their safety consequences.

## The 'vision' of the HSM -- a document akin to the HCM

- Definitive; represents quantitative 'state-ofthe-art' information
- Widely accepted in professional practice
- Science-based; updated regularly to reflect new research



## First edition outline

- Part I Introduction and Fundamentals
- Part II Knowledge
- Part III Predictive Methods -- Two lane roads -- Urban/suburban arterials -- Multilane rural roads
- Part IV Safety Management
- Part V Safety Evaluation

## AASHTO STRATEGIC HIGHWAY SAFETY PLAN

- A comprehensive plan to substantially reduce vehiclerelated fatalities and injuries on U.S. highways
   *Achieve less than 0.6 fatalities per 100 million vehicle-km*
- Produce guidebooks for emphasis areas
   Identify proven, tried and experimental countermeasures
- Not just a plan!
  - Stimulate/support research to fill in gaps in countermeasure knowledge
  - □ Market research to ensure implementation of results

## **Emphasis areas**

#### Drivers

- □ Young
- Unlicensed/Suspended/Revoked
- Older
- □ Aggressive
- Impaired
- □ Distracted/Fatigued
- Seat Belt Use
- □ Speed

#### Special Users

- Pedestrians
- Bicyclists

#### Vehicles

- □ Motorcycles
- Heavy Trucks

#### Highways

- □ Trees
- □ Run Off the Road
- Horizontal Curves
- Utility Poles
- Unsignalized Intersections
- Head-On Collisions
- Work Zones
- Emergency Medical Services

Rural EMS

#### Management

- Data
- Integrated Safety Management Process

Guide for addressing run-off-road collisions – Strategies to keep vehicles from encroaching on the roadside

- shoulder rumble strips
- edgeline "profile marking," edgeline rumble strips
- midlane rumble strips
- enhanced shoulder or in-lane delineation and marking for sharp curves
- improved highway geometry for horizontal curves
- enhanced pavement markings
- skid-resistant pavement surfaces
- shoulder treatments
- shoulder drop-offs
- wider and/or paved shoulders

Research to fill in gaps in knowledge *The Challenges* 

Need for sound evaluation methodology

Example of rail-highway crossings

- Extensive data needs to support new methodologies
  - Before-after accident and traffic data at large enough sample of treatment and non-treatment sites
  - Accident prediction models for condition before treatment

 Need for trained analysts in new methodologies
 E.g. Opportunity in Enna's road quality management Master's programme

#### INSTALLING GATES AT 934 U.S. RAIL CROSSINGS WITH FLASHERS



Accidents before= 286Accidents after= 114

Apparent savings = 172 (60% reduction)

The Reality: Accidents expected = 208

Actual savings (208 - 114) = 94(45% reduction) Research to fill in gaps in knowledge *The Challenges* 

> Need for sound evaluation methodology

Example of rail-highway crossings

- Extensive data needs to support new methodologies
  - Before-after accident and traffic data at large enough sample of treatment and non-treatment sites
  - Accident prediction models for condition before treatment

 Need for trained analysts in new methodologies
 E.g. Opportunity in Enna's road quality management Master's programme

# Recent safety evaluations with latest methods (for AASHTO SHSP)

Flashing beacons
Two way left turn lanes
Raised pavement markers
Centre line rumble strips
Improve skid resistance

## Flashing Beacons Accident reductions at 106 sites



| Angle | Injury &<br>Fatal |  |
|-------|-------------------|--|
| 13.3% | 10.2%             |  |



## turn lanes

| Percent reduction in crashes (standard error) |               |               |
|-----------------------------------------------|---------------|---------------|
| Rear-end                                      | Injury        | Total         |
| 38.7<br>(4.0)                                 | 26.1<br>(6.8) | 20.3<br>(3.0) |

## SAFETY EVALUATION OF CENTRE LINE RUMBLE STRIPS 340 km at 98 U.S. sites



|                                        | % reduction |
|----------------------------------------|-------------|
| All Impact<br>types                    | 14-15%      |
| Opposite<br>direction and<br>sideswipe | 21-25%      |

## SAFETY EVALUATION OF Pavement markers % Reduction in crashes

| L. |  |
|----|--|



|               | Night | Wet  |
|---------------|-------|------|
| New Jersey    |       |      |
| Non-Selective | 0.9   | 3.2  |
| 174 miles     |       |      |
| New York      |       |      |
| Selective     | 12.7  | 20.2 |
| 82 miles      |       | 23   |

Improve skid resistance at targeted locations (*High skid numbers and wet weather accident frequency*)

% reduction in crashes

| Location<br>Type           | All Crashes | Wet-road | Rear-end<br>Wet-road |
|----------------------------|-------------|----------|----------------------|
| Segments                   | 23%         | 56%      | 43%                  |
| Intersection<br>approaches | 20%         | 57%      | 68%                  |

# Where do we go from here? ... Future directions



# My vision for the future of infrastructure road safety

- Road safety as public health issue
  - Research funding/interest from Health Institutes
  - Publications in public health journals
- Interdisciplinary/multidisciplinary approaches
  - □ Accommodation in all road engineering disciplines
  - □ Canadian multidisciplinary examples
    - Network Centre of excellence: AUTO21
    - Fatigue related accidents .. Canadian Institutes for Health Research
- International cooperation
  - □ Research transferability Is it possible?
    - E.g., transferability of accident prediction models
- High level research using microscopic data
   SHRPII