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ABSTRACT 
The development of genetic algorithm that allows road pavement maintenance resource 
optimization pursues two aims: on the one hand the most economical maintenance 
strategy under given budget constraint, on the other as far as possible the reduction of 
the accident risk along the road infrastructures under consideration. 

Road accidents are closely connected to the altimetrical and planimetrical 
characteristics of layout, to the traffic conditions, and to the weather as well as road 
pavement conditions.  

Therefore there are many variables to manage and the traditional optimization 
techniques often fail to produce suitable management performance regarding both the 
budget target and road safety target.  

However, the multi-objective approach, based on a genetic algorithm model, seems 
to be a suitable technique for road pavement maintenance since it allows the selection of 
an optimal solutions set, known as the Pareto optimal solutions set, and the assigning of 
a fitness rank to each solution, based on the trade-off between economical and road 
safety features. 

In this paper such an approach was developed by examining some of the Sicilian 
motorways, and the results have highlighted the feasibility and capability of this 
approach in programming the maintenance of road pavements. 
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1. INTRODUCTION  
The planning of road maintenance involves a search for solutions or strategies that 

combine reliability with economy of resources. 
Pavement is one of the elements on which, more than any other, enormous resources 

are spent, since to a large extent, traffic safety depends upon its structural and functional 
efficiency.   

If on one hand the need to guarantee high levels of safety and functionality implies 
maintaining the pavement in excellent repair, on the other hand, motorway companies 
often find themselves struggling with insufficient availability of funds. 

Thus, it is important to identify priorities in intervention and to rationally plan 
maintenance work.  

From the above, it is clear that a basic conflict exists between the objectives that are 
being proposed: if on the one hand, maintaining pavement in a good state of repair 
requires a significant economic effort, on the other hand, the interest of the motorway 
company is that of keeping maintenance costs down. Both of these objectives are 
legitimate and at the same time contradictory in nature. 

To identify the best management strategy, it is necessary to use a mathematical tool 
that is able to offer a multi-objective approach to the problem, so that the minimum 
economic resources, under budget constraints, may produce the maximum effect in 
terms of safety. 

The genetic algorithm (GAs) technique fully meets this requirement. 
Having formulated a function for the risk state of a motorway infrastructure, this 

technique was applied as a decisional system for road pavement maintenance of the A18 
Messina-Catania motorway, a route of about 160 km. 

2. BACKGROUND 
In the beginning, the application of GAs to pavement management  was analyzed by 

Fwa  et al. (1994) to solve an optimal pavement repair program at the network level for 
a given rehabilitation schedule, subject to several forms of resource and operation 
constraints: production requirements, budget constraint, manpower availability, 
equipment availability, and rehabilitation schedule constraints. 

GA formulation is a key step in the solution process in which a GA representation of 
the problem is established. This is achieved by representing the decision variables in a 
string structure similar to chromosomes in natural evolution. 

The decision variables are the respective amounts of maintenance work, measured in 
workdays, assigned to each of the 48 maintenance treatment types. The 48 treatment 
types refer to maintenance repairs arising from four distress forms of three 
maintenance-need urgency levels on four highway classes. The coded string structure of 
GA representation would thus consist of 48 cells. Each cell can assume an integer value 
of workdays from 0 to 45. 

The earlier single-objective analyses performed by Fwa et al. (1994) offered 
solutions that maximized the work production in total workday units. 
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In a later study Fwa et al. (2000), in addition to maximizing work production, 
considered the following two additional objective functions: (1) Minimization of the 
total maintenance cost; and (2) maximization of overall network pavement condition.  

The selection of good solutions was based on the so-called Pareto-based fitness 
evaluation procedure by comparing the relative strength of the generated solutions with 
respect to each of the adopted objectives. 

Bosurgi et al. (2005) proposed an optimization procedure for the management of 
resurfacing interventions on flexible pavement. The optimization problem was faced by 
programming a genetic algorithm that manages the decisional process on the basis of 
two indicators, referring respectively to the Sideway Force Coefficient of pavement and 
to predicted accidents. The above indicators have been defined through predictive 
models elaborated with neural networks.  

The SFC prediction model has SFC values during the analysis period and cumulated 
traffic in input, SFC values at the end of the analysis period in output. 

In the accident prediction model, considered variables were relative to the geometric 
characteristics of the motorway, to the environment context, to the climatic and use 
condition, to the pavement condition and to the total number accidents that occurred 
during the analysis period. 

A solution to the problem is represented by a chromosome where as genes as 
programming years correspond to every homogeneous section. For every gene a 
numeric code represents a possible kind of maintenance intervention. 

In optimal allocation of the maintenance interventions two optimization problems 
were defined separately: minimization of the estimate accidents and maximization of 
the average SFC of the whole infrastructure. 

Chootinan et al. (2006) introduced a multi-year pavement maintenance 
programming methodology that is able to explicitly account for uncertainty in pavement 
deterioration. This is accomplished with the development of a simulation-based genetic 
algorithm approach that is capable of planning the maintenance activities over a multi-
year planning period.  

In this study two maintenance goals commonly used in the networks-level pavement 
maintenance optimization are considered: pavement-performance maximization and 
maintenance-cost minimization.  

The previous two optimization problems were combined to the bi-objective model in 
which both maintenance goals are simultaneously optimized. That is, the maintenance 
plan that costs less and provides higher pavement performance is more preferable. Both 
objectives are given a weight and combined into a single objective value.  

As in the previous case, the chromosome is coded as a series of T-year maintenance 
activities for all pavement segments.  

3. MULTI-OBJECTIVE OPTIMIZATION 
A general multi-objective optimization problem consists of a number of objectives 

to be optimized simultaneously and is associated with a number of inequality and 
equality constraints. Such a problem can be stated as follows : 
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The fi are the objective functions, N is the number of objectives, x is a vector whose 

p components are the design or decision variables. 
In a minimization problem, a vector x1 is said to be partially less than another vector 

x2 when :  
( ) ( ) ( )Nixfxfi ii ,,121 K=≤∀  

 
 and there exists at least one i such that ( ) ( )21 xfxf ii <  

Then it is said that solution x1 dominates solution x2. 
A common difficulty with a multi-objective optimization problem is the conflict 

between the objectives : in general, none of the feasible solutions is optimal for all the 
objectives. Then, a solution of the Pareto set is a solution which offers the least 
objective conflict. 

GAs select individuals according to the values of the fitness function. However, in a 
multi-objective optimization problem, several criteria being considered, the evaluation 
of the individuals requires that a unique fitness value, referred to as a dummy fitness be 
defined in some appropriate way. To achieve this, by application of the definition of 
non-dominance, the chromosomes are first classified by fronts. The non-dominated 
individuals of the entire population define front 1; in the subset of remaining 
individuals, the non-dominated ones define front 2, and so on; the worst individuals 
define front f, where f is the number of fronts. 

Once the individuals have been ranked by fronts, they are assigned the following 
dummy fitness values : 
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where r is the rank of the front. 

Because GAs use a population of individuals, their framework permits identification 
of a whole set of optimal or, more precisely, non-dominated solutions that define the 
Pareto set.  

The population should be characterized by species in order to obtain a whole set of 
trade-offs among the objectives. In order to achieve diversity (i.e. maintain individuals 
all along the Pareto front), a non-dominated sorting procedure in conjunction with a 
sharing technique has been implemented, first by Goldberg in and more recently by 
Horn (1994a, 1994b) and Srinivas (1995). Then, the objective is to find a representative 
sampling of solutions all along the Pareto front. This study refers to the algorithm of 
Srinivas and Deb (1995), called the Non-dominated Sorting Genetic Algorithm 
(NSGA). It makes use of a selection method by ranking those emphasizing the optimal 
points. The sharing technique or niche method is used to stabilize the sub-populations of 
the good points. It uses such a strategy because one of the main defects of GAs in a 
multi-objective optimization problem is the possible premature convergence. In some 
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cases, GAs may converge very quickly to a point of the optimal Pareto set and as the 
associated solution is better than the others (it is called a “super individual”), it breeds 
in the population and, after a certain number of generations, a population composed by 
copies of this solution only is obtained! 

Likewise, it is possible to obtain a Pareto set composed only of a few elements. It is 
to avoid such a situation that the non-dominated sorting technique is combined with the 
niche method any time a solution is found in multiple copies ; then, its fitness value is 
decreased and, in the next generation, new different solutions appear, even if they are 
not so performant. The fitness values decrease because the different niches to which 
belong the different optimal solutions have been identified and treated. 

The various steps of the method are the following : 
• Before performing the selection step on the available population of solutions, 

it first identifies  the non dominated individuals (according to the criteria). 
These individuals define front 1. The probability of reproduction of these 
individuals is very high. 

• It then assigns the same dummy fitness fi to the non dominated individuals i of 
front 1 (generally, the dummy fitness fi is equal to 1).  

• To maintain the diversity, the dummy fitness of the individuals is then shared: 
it is divided by a quantity proportional to the number of individuals around it, 
according to a given radius. If the individual has numerous neighbours, a large 
number of similar solutions exist and the fitness value is split in order to 
favour diversity in the next generation. This phenomenon is called a niche. 
Then after a niche has been isolated and treated for each individual of the 

current front, it assigns a new dummy fitness value, namely
i

i

m
f . 

• After the above sharing has been performed, the non dominated individuals are 
temporarily ignored from the population. For the new current front, we first 
assign to the each individual belonging to this front the same dummy fitness 

which is the minimum of the 
i

i

m
f  found in the previous front. 

• This process is iterated until all the population has been visited. 
• As a dummy fitness value has now been assigned to each individual in the 

population, selection, crossover and mutation can be applied in the usual 
manner.  

In the case of a minimization problem, the population is sorted by assigning  a greater 
dummy fitness to the best individuals: the individuals of front 1 have a greater fitness 
than the individuals of front 2 that, in turns, have a greater fitness than the individuals of 
front 3, and so on ; as a result, the Pareto optimization becomes a maximization. 

4. METHOD 
The multi-objective approach implies the definition of at least two functions, in this 

case representing the degree of safety offered by the road infrastructure, and the costs of 
maintenance.  
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The GAs technique was applied to an important Italian motorway, the A18 Messina-
Catania, using a method as follows: 

• Creation of a functional and geometric database, which first analyses the 
characteristics of the infrastructure in question, then carries out discretisation 
of the same, into functional units; 

• Creation of a database of accident rates, requiring selection of the factors that 
concur to cause an accident and the formulation of a function that links these 
factors to the accident rate itself; 

• Elaboration of the data, consisting of a programming phase and an 
optimization phase.  

4.1 Selection of indicators of the state of infrastructure 
The first phase consists of acquiring data regarding the plano-altimetrical geometry 

of the route, the surface characteristics of the pavement, weather and climate conditions, 
and traffic divided into heavy and light vehicles.  

The entire route of the A18 was divided into Functional Units (FU), made up of 
planimetric segment-circular curve sequences (clothoid is not present) so that their 
length was between one and two kilometres. 

Each FU that is geometrically characterised in this way is a distinct element, defined 
by the same conditions of the state of pavement and climatic conditions.   

Previous studies carried out on the A18 [Bevilacqua et al. 1998, 1999a, 1999b] 
through the use of Neural Networks had already identified, using a precise hierarchical 
scale, the concauses that determine accidents.  

On the basis of this research, a set of indicators was selected to represent each FU, 
made up of :  

• Average Daily Traffic of passenger cars only, ADTL; 
• International Roughness Index, IRI; 
• Sideway Force Coefficient, SFC; 

• Curvature index, 
∑
∑

=

i
i

i i

i

T L
R
L

I  ; 

• Gradient index, 
∑
∑ ⋅

=

i
i

i
ii

P L

pL
I ; 

• Weather-climate index, 
days wet annual ofn
rain ofheight  annual

°
=kI . 

• Accident rate Indicator, Ia, equal to the number of accidents registered 
corresponding to the generic FU. 

The period of analysis covers five years from 2000 to 2004 and significant 
observations total 237.   

Since it is not easy to work with the numerical values of input indicators, we decided 
to subdivide the variation interval of each indicator into classes in order to refer to a 
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single representative value for an entire class, and then create identification initials for 
that class. 

The number of classes for each indicator depends on the need to describe in detail 
the data and on the importance assigned to certain characteristics in terms of 
determining accident occurrence; for some of these characteristics, the extra detail is 
due to the fact that maintenance intervention is based directly on these characteristics. 
The following table shows the variation domain and the classes for each indicator: 

 
Table 1  Variation domain ranges for each indication and number of orresponding 

classes 
Indicator Ranges of domain N. classes 
IRI 1- 4.15 3 
SFC 40.5 - 70.5 3 
ADTL 2800 - 26800 3 
It 0.00012 - 0.00152 2 
Ip (-0.031) - 0.039 2 
Ik 1.0 - 7.0 2 
Accident range 0-17  

4.2 Definition of the risk state function 
The risk state function was formalised on the assumption that the relation linking the 

number of accidents to the 6 chosen indicators, is linear for each of the considered 
functional units. 

The multiple linear regression on an initial sample of 237 observations was 
submitted to the following statistical tests:  

R2 e R2
adj , Student test T, Leverage test, Variance Inflaction Factor test, Ramsey 

RESET test, Breusch-Pagon test in the Cook-Weisberg version, and the Jarque-Bera 
test. 

After several tests, the It and Ik parameters are resulted not relevant and the 
following relation was obtained on a final sample of 230 observations: 

 
LP ADTIRISFCIRS 0000377.03960943.01291383.0250908.7354441.8 ++−−=  

            (Eq. 1) 
Table 2   Parametres of the third relation of multivariate linear regression  

N°inc Coef. Std. Err. t P>|t| [95% Conf.Interval] 
Ip -7.25091 3.889339 -1.86 0.064 -14.9151 0.413282 
SFC -0.12914 0.015901 -8.12 0 -0.16047 -0.09781 
IRI 0.396094 0.184389 2.15 0.033 0.032744 0.759445 
ADTL 3.77E-05 1.39E-05 2.71 0.007 1.03E-05 6.51E-05 
constant 8.354441 1.272436 6.57 0 5.847026 10.86186 
Number of obs=230 R2= 0.5761 Adj R2=0.5685  
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The total number of risk states is 54, considering all the possible combinations of the 
identified classes of state indicators.  

Therefore, each UF is characterised by a particular RS value. 

4.3 Programming Model  

4.3.1 Definition of the intervention strategies  
The types of intervention to be carried out on the road in question depend on the 

state of wear of the pavement, and since this varies so much, a whole range of 
intervention solutions needs to be available.  

 The description of these intervention solutions is external to the purpose of the 
present work, but it is important to emphasise that the model requires a definition of 
each basic activity under each type of intervention. 

Defining the basic activities implies a description of the specific jobs to be carried 
out, and of the basic cost  of each job per m of road. The sum of the costs of each job 
for each intervention represents the basic cost per m of the same, ck. 

The table below shows the average costs obtained, according to a Sicilian market 
survey regarding the four most common maintenance solutions for motorway pavement.  

 
Table 3   Intervention therapy and  relative prize 

Intervention Solutions Price [€/m] 
Surface Repair 144,59 
Coating renewal 240,21 
Asphalt layers renewal 365,80 
Pavement Repair 491,65 

 
Among the possible solutions, we must also include solution 0, that is, the choice 

not to apply any solution, which has a corresponding cost of 13 Euros according to 
market research, which allows for cleaning and inspection expenses. 

An operative strategy on the entire road network is obtained when for each FU, the 
type of solution  and the time for intervention is established. 

The available budget, B, for maintenance over a given period of time, is a given 
factor in the problem, and depends upon the management policy of the company. Such a 
factor is a strong conditioning element, since out of the whole range of possible 
strategies for the network in question, one must first exclude all the strategies whose 
costs exceed the budget.  

4.3.2 Application of Markov’s theory 
Once an S series of possible strategies for intervention on the network has been 

assumed, it is necessary to predict the Risk State for each individual Functional Unit at 
the end of the maintenance work planning period.   

The probability model for the forecast is the stationary Markovian model, based on 
the assumption that the probability at t+1, that the variable X, in this case the Risk State, 
will assume the value it+1 depends exclusively on the value of the variable considered 
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corresponding to the time t immediately before, and not on the sequence of values that 
X assumes in times t-1, t-2, …,1, 0.  

Indicating the probability of transition (one step), with pij , that is the probability 
that at time t+1 the system will be in state j, having been in state i at time t, all the 
conditions of transition of the system from one state to another due to the effect of the 
generic intervention can be summed up in the kth Transition Matrix:  

 

 

⎟
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⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
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Pk                                       (Eq. 2) 

 

kP is a square matrix of 54*54 elements, for which the following condition is given: 
 

∑
=

=
54

1

1
j

ijp                                                          (Eq. 3) 

      
The number of transition matrices is equal to the possible typologies of intervention. 
Each element of the transition matrix is defined as a composite transition and is the 

probability that the set of indicators placed respectively in classes a, b, c, d before the 
intervention, move to classes e, f, g, h as a consequence of intervention k. Such 
probability is obtained as a product of each single simple transition probability of each 
indicator, considered as independent events. 

Therefore if the combination of classes [a, b, c, d] represents the generic risk state i, 
while the combination [e, f, g, h] represents the status j, the transition pij of the generic 
UF is computed as follows: 

 
                    dhIcgIbfIaeIij PPPPhgfedcbaPp

4321
),,,,,,( ×××=→=                    (Eq. 4) 

 
The single factor of the product is the transition probability of one of the 4 

considered status indicators and can be computed analyzing the historical data tracing 
the percentages of networks that pass from one class to the other of the generic indicator 
during a year as a consequence of the kth intervention [Marchionna, 2002]. 

The reference database concerning the period 2000-2004 provided the necessary 
information to determine the probability, as described above, on the basis of the 
chronology and typology of maintenance intervention performed. 

The variables of the optimization problem are the percentages of length of the road 
network a

rΛ  which are in a given risk state r, during the generic year a of the 
programming period. 

If we assume that year a is the moment in which we plan the interventions for the 
following year a+1, the current state of the road pavement is that of year a, while the 
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road pavement conditions expected as a consequence of the intervention strategy 
selected are those of the year a+1. 

In addition we indicate as a
rkλ  the length percentage of the entire road network that 

in the year a is at state rth and is programmed to undergo the generic intervention k, and 
as 1+a

rkλ  the length percentage that in the year a+1 is at state r as a consequence of the kth 
intervention. 

The formulas are:  

tot

a
ra

r L
L

=Λ   
tot

a
rka

rk L
L

=λ       (Eq. 5) 

 
Thus defined the variables of the problem, naturally we obtain: 
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To define the initial conditions it is necessary to compute the length quantities of the 

road network which are in one of the 54 risk states during year a, the year in which 
planning takes place. We obtain a vector 

a
Λ of dimension 54 that is made of the 54 

length percentages a
rΛ . 

Within quantity a
rΛ a component will undergo intervention 0, one component 

intervention 1, and another component generic intervention k and so forth, therefore for 
each intervention strategy we obtain the k vectors 

a
kλ  of simple percentages a

rkλ : 
 

aaaaaa
43210 λλλλλ ++++=Λ                        (Eq. 7) 

 
which written as a matrix is: 
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The transition conditions are represented by the equation that expresses the product 

of the rth column of the transition matrix of the generic intervention k for the vector 
a
kλ . 

Such scalar product results in a numerical value expressing the sum of the network 
percentages which as a consequence of the intervention k pass from the 54 risk states in 
which they were during year a to the jth risk state in year a+1. 
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In matrix form the first of the two relations, specifically for intervention 0, becomes: 
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Note that the transition matrix of the matrix product is not the 0P of the Equation 
[5], but its transposed. 

The vector 
a

Λ represents the distribution of the network percentages during the 
various risk states before carrying out the generic maintenance strategy s, the vector 

1+
Λ

a
represents the same distribution as a consequence of the strategy s (

1+
Λ≠Λ

aa
). 

The first goal function of the programming model is a measure of the danger level of 
the road network and represents the degree of safety and functionality of the 
infrastructure following the maintenance interventions selected for each basic section of 
the network under examination. This can be computed with the following formula: 

 

∑∑
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The second goal function matches indeed the cost Cs of each intervention strategy, 

computed with the following formula: 
 

k

M

m k

a
mkS cLC ⋅= ∑∑

= =1

4

0

    (Eq. 13) 

 
where Lm  is the longitudinal extension of the mth Functional Unit (m=1,2,…,M). 
The two criteria are reasonably in contrast. In order to considerably reduce the danger 
level of the network it is necessary to intervene with more incisive therapies, therefore 
spending a bigger amount of resources. If a minor cost strategy is selected obviously 
you cannot solve the functionality conditions of the whole network, instead an 
intervention priority must be decided for those areas that present major criticality for the 
circulation safety. 
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4.4 Optimization Method: Genetic Algorithm 
The calculation process of the Genetic Algorithm follows a set of elementary 

instructions that are applied repeatedly until obtaining convergence to a set of solutions 
known as the Pareto optimal front.  

The original population of chromosomes, each representing a maintenance strategy, 
is generated randomly. The main steps of each application are:  
1. Selection of a population of popSize elements using the Roulette Wheel selection 

procedure: once the cumulative fitness has been generated and a random number 
between zero and the fitness rank has been extracted from the whole population (as 
a sum of all the fitness), there is a selection of the individual with a fitness rank 
immediately below the extracted random number. This procedure is applied as 
many times as there are individuals in the population.  

2. Updating of the population applying crossover and mutation operators. 
The first is applied after random popSize/2 selection of couples of individuals. 
Then the mutation operator randomly selects a gene from each string, and with a 
probability that depends on the rate of mutation, substitutes the value with one of 
five possible values (0,1,…,4). 

3. Calculation of the W matrices of the percentages of road pavement that are found 
respectively in the various risk states and that are to undergo different maintenance 
interventions according to the proposed strategies.  
Matrix products are calculated to obtain the WW matrices of the same percentages  
expected following maintenance, and finally, risk state functions and costs for each 
population string are calculated.   

4. Classification of the solutions according to the following dominance rules: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2212211122122111 ee xfxfxfxforxfxfxfxf <≤≤<  

Dummy Fitness values are assigned which are the inverse of the rank, substituting 
previously obtained fitness ranks with this single value which represents a 
compromise of the two. 

5. Adoption of fitness cut techniques using the niche method to avoid premature 
convergence of the genetic algorithm.  

6. Calculation of the cumulative fitness using values obtained after the cut technique.  
The process is repeated the same number of times as the number of generations, placing 
the population fitness values in a matrix entitled ‘Genetic Algorithm Results’.  

This matrix includes all the solutions provided by the Algorithm throughout the 
various generations, from which the best or dominant solutions are selected, 
representing the “Pareto Front”.  

In order to select the Optimum Final Strategy (OFS) from this curve, various criteria 
may be followed, expressed in the following relations:   

 
    OFS = min[Ci]               (Eq. 14)   
    OFS = min[Θi]                 (Eq. 15) 
    OFS = min[CMi]     (Eq. 16) 
    OFS = min[Disti]     (Eq. 17) 
 
with  Ci ≤ B. 
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Where:   

   
iinitial

i
Mi

C
C

Θ−Θ
=   [ € / (n°accidents x FU) ]               (Eq. 18)  

 
where initialΘ  is the danger in year a before carrying out any intervention, and is 
obtained as follows: 

 ∑∑
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Θ−Θ
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5. ANALYSIS OF RESULTS 

The model was applied by acting differently on the generation of some chromosome 
populations: in the case called R the starting population, made up of 100 chromosomes, 
was entirely generated randomly; in the other case called RE in the starting population, 
made up of 95 chromosomes generated randomly, 5 extreme chromosomes were 
inserted, these represented a strategy consisting in the same intervention on the whole 
network. 

Every starting population was exposed to an evolutionary process according to 100, 
200 and 300 iterations. 

For both the procedures, R and RE, 7 starting populations were taken into account 
and, at the end of the iterative process, in addition to determine the Pareto’s front and 
the number of distinct solutions belonging to the front itself, the best solution was found 
according to the criterion of the minimum distance.  

The results and some representative diagrams of Pareto’s front are shown in the 
following tables (Tables 4 and 5, Figures 1 and 2). 

Finally, for each analysed case, the diagrams for n° of iterations and chromosomes 
of the front were elaborated, they helped to understand the quantitative evolution of the 
Pareto’s front. In figures 3 and 4 the diagrams related to the R300a and RE300a cases 
are shown. 

By examining the results of the R procedure we observe as, generally speaking, after 
an increase of the number of  optimal solutions related to the increase of the iteration 
number, it follows that the best solution for each case does not differ significantly from 
the others. 

An analogous trend is found also in the RE case. In this case, the number of optimal 
solutions, in addition to grow significantly when the iteration number increases, shows 
better results, if compared with the same outcomes of the R procedure, both from a 
quantitative (number of distinct optimal solutions)  and qualitative (chosen solution 
according to the criterion of the minimum distance, which is better in the RE procedure 
than in the R procedure) point of view.  
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Finally, a significant  outcome is the greater rapidity, found for the RE procedure, to 
arrive at the number of  the front solutions compared with the trend shown in the R 
cases, which are both displayed in diagrams 3 and 4. 

In conclusion, we can affirm that the RE procedure, not completely random, seems 
to have more reliable performances, both relating to the results and to the rapidity of 
choice. Generally speaking, due to the importance of the problem we have faced, it 
could be considered a reliable threshold of the number of solutions equal to 300. 

 
Table 4   Optimal solutions selected using the minimum distance criteria. Case R 

Procedure Iterations N° of Pareto’s singular 
chromosomes  

FOS 

R100a 100 77 3.16 x 107 1.264 
R100b 100 93 3.12 x 107 1.213 
R100c 100 101 3.08 x 107 1.207 
R200a 200 83 3.03 x 107 1.229 
R200b 200 102 3.32 x 107 1.171 
R300a 300 117 3.16 x 107 1.242 
R300b 300 180 3.058 x 107 1.247 

 
Table 5  Optimal solutions selected using the minimum distance criteria. Case RE 

Procedure Iterations N° of Pareto’s singular 
chromosomes  

FOS 

RE100a 100 237 2.48 x 107 1.208 
RE100b 100 395 1.96 x 107 1.316 
RE100c 100 189 2.51 x 107 1.210 
RE200a 200 414 2.26 x 107 1.162 
RE200b 200 326 2.87 x 107 1.494 
RE300a 300 252 2.94 x 107 1.426 
RE300b 300 304 2.19 x 107 1.165 

 
 

  
Figure 1 Pareto Front in case R300a  Figure 2 Pareto Front in case RE300a 
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Figure 3 Number of optimal solutions 

corresponding to each iteration.  
Case R300a 

Figure 4 Number of optimal solutions 
corresponding to each iteration. 

 Case RE300a 

6. CONCLUSIONS 
The above study resulted in the definition of a model for attribution of resources for 

road pavement maintenance on the A18 Messina-Catania motorway, which allows an 
optimal solution to the maintenance problem to be obtained. 

Clear benefits were found in the use of Genetic Algorithms in searching for a set of 
solutions for a compromise between the objectives laid out at the beginning of this 
study.   

The research carried out in this study is innovative in its approach to the problem, 
which is multi-objective in nature, since it seems that the problem that the decision-
maker faces regarding maintenance work, is the divergence that exists between budget 
requirements and improvement of traffic safety conditions.  

It was precisely for this reason that further study was carried out on the method, 
introducing concepts such as the Pareto optimization criteria which does indeed seem fit 
for the task. 

The results of  these formulations show that the procedure that was followed was 
successful, translating into perfectly identifiable specific maintenance strategies. 

However, it should be noted that depending on the generation procedure and the 
number of preset iterations, the speed of decision and economy of time may vary 
considerably. 

In future, further study, typically required for research of this kind, should focus on 
the formulation of a risk state function so that these results, already important in 
themselves, may become even more so.    

Furthermore, from a computational point of view, in future it would be beneficial to 
widen the analysis by involving a greater number of like infrastructures, so as to arrive 
at more general conclusions.  

However, for aims that are applicable in research, this analysis is held to be pertinent 
to the individual infrastructure, since it possesses specific characteristics, traffic 
condition, geometry, pavement and so on, which are unlike those of any other.  
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