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ABSTRACT 
This paper describes a range of uniaxial creep tests that have been undertaken for a 

proprietary polymer modified asphalt, the procedure used to determine the parameters 
required for an elasto-visco-plastic constitutive model. 

Uniaxial compressive creep testing and creep recovery testing have been undertaken 
over a range of temperatures and stress conditions. Procedures used to determine the 
model parameters from the test data are detailed and parametric equations are developed 
to describe the model parameters as functions of the test conditions. Particular attention 
is given to the determination of the parameters related to visco-plastic flow and damage 
accumulation at high strain levels. The model has been implemented in to the CAPA-
3D Finite Element (FE) program and preliminary verification has been undertaken. 
Keywords: constitutive modelling, Asphalt concrete, Finite Element, Damage 
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1. INTRODUCTION 
During the last few decades there has been an increasing trend in Europe towards the 

use of analytical methods of pavement design.  The traditional empirical methods that 
they are replacing cannot respond rapidly to changes in traffic and relative material 
costs or innovative changes in methods for construction or materials.  Analytical 
methods are more flexible and can respond to these changes more easily.  The structural 
design of a pavement and the prediction of its long term performance are two 
complementary and closely linked tasks.  Of course, there is a strong need to consider 
the behaviour of the pavement component materials and their deterioration mechanisms 
from the beginning of the design phase. 

A particular sub-class of problems that is of interest to the pavement designer is 
related to situations where the loading is very slow moving or stationary (e.g. container 
loading, aircraft standing areas, etc).  Under these circumstances, the long loading times 
can lead to high levels of permanent strain (deformation) in the asphalt and many of the 
standard predictive techniques are not appropriate.  Since the rate of accumulation of 
permanent deformation is time dependent, the most suitable forms of constitutive model 
are based on viscoelasticity and/or viscoplasticity.  The objective of the research 
described in this paper is to develop a constitutive model that can be used to predict 
permanent deformation under conditions where the loading is very slow-moving or 
stationary.  The essential element in the prediction is a set of materials parameters that 
characterize the material and can be used in computer codes for predicting the 
magnitude of the rut depth.  These parameters can be derived from appropriate 
laboratory tests carried out at specified loads and temperatures. 

All these things considered, together with the continuing increase in computing 
power, it is now clear why more and more effort has recently been put into developing 
Finite Element (FE) codes for elasto-visco-plastic analysis of pavement materials, as in 
Scarpas et al. (Scarpas, 1977).  In such codes, the behaviour of each element (into which 
the continuum under consideration has been subdivided) can be analyzed separately and 
the cumulative deformations of the element brought together to give a resultant 
deformation for the whole structure.  An FE model can easily deal with non-linear 
material behaviour, time and temperature dependent materials under various loading 
conditions, and virtually any geometric condition, including pavement discontinuities.  
On the basis of the nodal displacements, stresses and strains can be computed at any 
location of the structure, and, therefore, the desired versatility can be attained for 
studying a wide range of pavement geometries and damage modes. In order to achieve 
this goal, a comprehensive constitutive model of asphalt mixtures is required, based on 
the development of constitutive equations that account for effects of viscoelasticity, 
viscoplasticity and growing damage in the mixture, as in Collop et al. (Collop, 1999). 

The objective of this work is to combine the non-linear hereditary behaviour of 
bituminous mixtures as well as the effect of distributed damage into a single constitutive 
model for predicting stress-strain behaviour and growth of damage. The model has been 
implemented into the CAPA-3D FE program developed by Scarpas et al. (Scarpas, 
1998) and Erkens et al. (Erkens, 2002). 
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2. MODEL DESCRIPTION 
Even though an asphalt mixture is basically a multi-component material, the concept 

of a representative continuum has been widely accepted in describing its response to 
external loads and climatic effects. Furthermore, the measured mechanical 
characteristics of asphalt correspond to working conditions for which the material’s 
response is very complex.  As an approximation, the notion of deformable mechanics 
can be used and an asphalt mixture can be assumed to be visco-elastic, homogeneous 
and isotropic material, with plasticity.  The mechanical properties of such a material can 
then be studied then separately, according to whether the deformations measured in 
creep/recovery tests are time dependent and recoverable or not, as in Lu et al. (Lu, 
1997).The behaviour of an elasto-visco-plastic material closely resembles that of 
models built from discrete elastic and viscous elements, normally a number of spring 
and dashpot elements arranged in series and parallel as studied, for example, by Flugge 
(Flugge, 1967) and specified for asphalt mixtures by Santagata et al. (Santagata, 1996).  
The generalised Burger’s model is adopted here, consistently with previous work within 
the framework of this research project.  This model contains the Maxwell model and a 
number of Kelvin-Voigt models, each characterized by a time constant known as the 
relaxation time.  In such a model the same stress is transmitted through each element, 
while the strains (and strain rates) are additive, giving: 

 
 )()()( tεtεtεε(t) VPVEEL ++=  (Eq. 1) 

 
where ε, εEL, εVE and εVP are the total, elastic, viscoelastic and viscoplastic strain 

components, respectively, and t  is time.  With the proposed approach, elastic, 
viscoelastic and viscoplastic strains can be evaluated individually, using the following 
equations: 
 

 
0

)()(
E

ttEL
σ

=ε  (Eq. 2) 

 ')'(
)'(

)'()()0()(
0

dtt
ttd

ttdJtJt
t

VE
VEVE σ⋅

−
−

+σ⋅=ε ∫  (Eq. 3) 

 ')'(
)'(

)'()()0()(
0

dtt
ttd

ttdJtJt
t

VP
VPVP σ⋅

−
−

+σ⋅=ε ∫  (Eq. 4) 

 
where E0 is the modulus of elasticity and JVE and JVP are the viscoplastic and 

viscoelastic creep compliances, respectively, and t’ is a dummy integration variable. 
The strains due to elasticity are fully recoverable and time-independent.  The strains 

due to viscoelasticity are time dependent: their magnitude depends on the load duration 
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and on the rate of loading and unloading.  These strains are fully recoverable.  The 
strains due to viscoplasticity are permanent. 

Integrating Equations 3 and 4 for σ = σ0  (this is the case for a creep test), gives: 

 t
λ
σ

(t)εVP ⋅=
∞

0  (Eq. 5) 
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where   
 λ∞ is the viscosity of the model, i is the ith Voigt element of the model, n is the 
total number of Voigt elements in the model, Ei is the modulus of elasticity of the ith 
Voigt element, τi =λ1/E1 is the  relaxation time of the ith Voigt element and λi is the 
viscosity of the ith Voigt element. 

In terms of the total deformation, Equations 2, 5 and 6 can be combined to give: 
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J(t) is the total creep compliance of the model, here defined as the ratio between the 
measured strain and the applied stress without deterioration effects, when σ(t) = σ0. 

The viscoelastic and viscoplastic components were calculated using the Hereditary 
Integrals formulation.  These formulas show how the viscoelastic and viscoplastic strain 
at any time depend on the entire stress history, with a fading memory. 
ext. 

2.2 Viscoplastic stress dependence 
Previous research by Collop et al. (Collop, 2001) has shown that at high stress 

levels, the steady-state (viscoplastic) strain-rate follows a power law relationship given 
by: 
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where K and n are material constants.  Results from triaxial experiments presented 
by Collop et al. (Collop, 2001) have also shown that the steady-state strain rate not only 
depends on the overall stress level, but also on the test temperature and the degree of 
confinement.  Consequently, based on these results, a model of the following form can 
be formulated for determining the equivalent viscosity of the viscoplastic element as a 
function of the stress conditions, temperature and degree of confinement: 
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where σe is the Von Mises equivalent stress { }( )2123 ijije ss=σ , sij is the 

deviatoric stress tensor ( )kkijijijs σδ−σ= 31 , δij is the Kronecker delta, p  is the mean 

stress (p=1/3 σkk), η  is the stress ratio (η=p/σe)  λuni is the uniaxial viscosity measured 
from a uniaxial compression test (where η = -1/3), T is temperature, and n, σ0, B are 
material constants.  Equation (10) is implemented numerically into CAPA-3D using the 
values of σe  and η calculated at the beginning of the time step (i.e. at time t). The 
material parameters used by Collop et al. (Collop, 2001) are 6020 =λ C

uni GPas, 

530 =λ C
uni GPas, σ0 = 100 kPa, n=2  and B = -3.2. 

It can be shown that Equation (10) models the behaviour reasonably well, although 
the temperature and stress ratio ranges are somewhat limited.  It should also be noted 
that, although Equation (10) is in a form in which it can be applied to any stress state, 
the experimental data from which it was derived were only for negative stress ratios (i.e. 
compressive mean stress). 

2.3 Viscoplastic damage 
It can be seen from Equations (9) and (10) that a constant stress creep test will 

result in a constant value of effective viscosity and therefore a constant rate of 
permanent strain accumulation.  However, it is well known that during the latter stages 
of a creep test (the tertiary creep phase), the strain rate increases dramatically, which 
implies that the viscosity decreases as the material becomes progressively damaged. 

Various methods are in use to model “damage”.  A relatively simple approach is to 
use Continuum Damage Mechanics (CDM) (Murakami, 2000; Schapery, 2001).  
According to CDM, it is assumed that the damaged state at an instant t can be described 
by a scalar Damage Variable D(t) (0 ≤ D(t )≤ 1), where the states D=0 and D=1 
represent the undamaged and the completely damaged state, respectively.  CDM also 
requires a damage evolution law to describe damage growth (Odqvist, 1974, Schapery, 
1999). As in previous research by Collop et al.( Collop, 2003) or by Le May et al. (Le 
May, 1999), Rabotnov’s theory (Rabotnov, 1969) has been used in this work giving: 
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where μ,,,,, 21 vmnCC  are material constants that, in general, depend on 
temperature.  This kind of system reveals a clearly defined phenomenological approach, 
based on the assumption that creep and deterioration do not proceed independently.  

It can be seen that Equation 11 can be re-written in a similar form to Equation 9, 
giving: 
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In this way, the equivalent viscosity of the viscoplastic element can be determined 
as a function of stress conditions, temperature and degree of confinement.  Taking into 
account the similitude between Equations 9 and 11, and also between Equations 10 and 
14, Equation 10 can be modified, introducing an extra term accounting for cumulative 
damage giving: 
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In order to be valid also for three-dimension problems, the evolution equation 
(Equation 12) can be rewritten in terms of Von Mises equivalent stress to give: 
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where C~  is a material constant. 
It has also been suggested that ( ) 21+= nv  holds for a range of materials and 

temperatures in uniaxial creep further reducing the number of constants.  Moreover, if it 
is assumed that n=m, the number of independent constants to be determined in Equation 
16 decreases further. The previous assumptions lead to a damage law formulation that, 
after integrating and imposing the appropriate boundary condition, is given by: 
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This closed-form solution can be used for fitting purposes, but it has to be used in 
an incremental way if introduced into an FE program.  In incremental formulation, it 
can easily be shown that the damage increment is given by: 
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By substituting Equation 7 into Equation 15, Equation 1 can be rewritten as in 
Equation 19, in a way that makes it possible to take into account the evolution of the 
damage: 
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3. EXPERIMENTAL WORK 
A test that is frequently used for evaluating time-dependent properties of asphalt 

mixtures is the uniaxial compression test, in which a specimen is subjected to 
loading/unloading cycles, with the applied stress kept constant over the loading period.  
Uniaxial creep compression tests were carried out on laboratory prepared specimens of 
dense AC 0/16 with a proprietary polymer modified bitumen. The samples were 
prepared with a diameter of 100 mm and a height of 120 mm using the gyratory 
compactor.  The density of the specimens was kept as constant as possible, at a target 
value of 2,405 kg/m3 corresponding to 100% Marshall density.  A total of 61 specimens 
were prepared and tested.  

Creep (uniaxial compression) tests were performed at three temperatures (20, 40 
and 60 °C) and various stress levels depending on the test temperature (0.5 to 6.0 MPa).  
Two types of test were performed: loading until failure (Figure 1) (assuming 10% axial 
strain as a failure criterion) and loading followed by unloading at some point during the 
steady-state phase where the deformation rate is approximately constant (Figure 2).  
Axial deformation was measured using load-line displacement and radial deformation 
was measured using three LVDT’s equally spaced around the circumference of the 
specimen at mid-height.  A friction reduction system was used between the asphalt 
specimen and the test plates, which consisted of two thin plastic sheets separated with 
silicon grease. 
 



4th INTERNATIONAL SIIV CONGRESS – PALERMO (ITALY), 12-14 SEPTEMBER 2007 

 

 8 

Failure tests at 20 °C
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Figure 1 Creep tests till failure, for different stress levels 
 

Recovery tests at 40 °C
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Figure 2  Creep tests with recovery, for different stress levels. 
 
For each combination of load and temperature, recovery test were preceded by failure 
test carried out in analogous conditions, in order to be able to identify the range of the 
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steady state, so that it is possible to avoid the risk of bringing on any damage into the 
material when performing recovery tests. 

3.1 Model fitting procedure 
With one Voigt element in the model, 7 parameters need to be determined.  Four of 
them are related to the classical Burger’s model (E0, λ∞, E1 and λ1), another two are 
necessary in order to calibrate the damage growth ( C~  and μ) , while the last one, n, 
takes into account the stress-based nonlinearity introduced into the viscoplastic 
component of the model.  Unloading tests were used to determine the classical Burger’s 
model parameters, while failure tests were used to determine additional damage 
parameters.  Both of them, failure and recovery test, were used to determine the last 
parameter, related to the non-linear stress dependent behaviour of the asphalt mixture. 

Substituting Equations 2, 5 and 6, Equation 1 can be rewritten as: 
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Using a non-linear least squares fitting method, it is possible to determine the above 
parameters, from the region where the load is held constant. 

The instantaneous elastic modulus of the model E0, was directly calculated as 
the slope of the stress-strain curve during the time when the load is applied at a constant 
rate until the target stress level is reached, as shown in Figure 3.  
 

Elastic response during the loading phase

y = 350,09x + 0,08
R2 = 0,9987

0

0,5

1

1,5

2

2,5

0 0,001 0,002 0,003 0,004 0,005 0,006
Strain

St
re

ss
 (M

Pa
)

 
Figure 3   Stress vs. strain, during the application of the load. 
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During this phase, Imposing a constant stress rate C and evaluating the Hereditary 
Integral in Equation (7) for σ(t)= C·t gives: 
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It was found that, as expected, the elastic modulus E0 does not depend on the stress 
level but only on temperature (see Figure 4): 

 
T
aE =0  (22) (Eq. 22) 

where a = 4964. 
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Figure 4  Elastic modulus as a function of temperature from creep testing. 
 

The other parameters of the model not related to damage growth (i.e. λ∞, E1 and λ1) 
have been determined based on the nonlinear least square fitting method, fitting to the 
phase where the load is held constant in the recovery tests. The variation of the 
viscoelastic parameter E1 with stress and temperature (see Figure 5) was found to be 
given by: 

 22.100025.289.106),(1 −⋅+σ⋅=σ TTE e  (Eq. 23) 
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Figure 5  E1 as a function of stress from creep testing. 
 
The variation in the other viscoelastic parameter λ1 with stress and temperature (see 
Figure 6) was found to be given by: 
 6957.5)4671.00588.0(),(1 +σ⋅+⋅−=σλ eTTLog  (Eq. 24) 
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Figure 6  Parameter λ1 as a function of stress from creep testing. 
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Combining the two of them together, it is possible to predict the dependence of the 
relaxation time τ1 = λ1/E1  on stress and temperature, as shown in Figure 7. 
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Figure 7  Relaxation time τ of the Voigt element as a function of stress. 

 
Together with E1 and λ1, the same fitting routine was applied to the constant load 

phase of the recovery tests in order to determine λ∞ as a function of stress level and 
temperature (see Figure 8): 

 
 771.91021.01395.8 +−σ⋅−=λ∞ TLogLog e  (Eq. 25) 

 
The parameter n was determined from the viscoplastic stress dependence of the 

material. It can be seen from Equation 10 that if the equivalent viscosity λ∞ is plotted 
against stress level on double logarithmic scales (see Figure 8) the gradient is given by 1 
- n.  This resulted in a value of n = 9.139. 
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Figure 8  Parameter λ∞ as a function of stress from creep testing. 
 

Failure tests were used to determine additional damage parameters.  As far as C~  is 
concerned, it was found that it depended only on temperature (see Figure 9): 
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+⋅−= TC  (Eq. 26) 
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Figure 9  Parameter C~  as a function of temperature. 
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The damage parameter μ was found to depend on both temperature and C~  (see 

Figure 10): 
 
 μ = (0.078*T+0.3814)· C~  (Eq. 27) 
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Figure 10  Parameter μ as a function of C~  
 

The final step of the fitting procedure proposed in this work consisted in using 
Equation 15, with σ0 assumed to be equal to 100 kPa as in Collop et al. (Collop, 2003) 
(see Figure 11) to calculate the equivalent uniaxial viscosity as a function of 
temperature giving: 
 

 91.171021.0 +⋅−=λ TLog uni  (Eq. 28) 
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Figure 11  Variation of λuni with the temperature. 
 

As a first stage verification, one of the creep tests curves was simulated in CAPA-
3D using the constitutive model and parameters determined above. A single-element 
mesh representing the specimen was subjected to the uniform vertical contact stress 
used in the test. Figure 12 shows the simulated and measured responses. It can be seen 
from this figure that agreement is generally good. The main difference between the 
predicted and measured curves occurs early in the test (before 10 seconds) where the 
predicted curve is greater than the measured curve. This is due to difference in the way 
the load is applied.  In the simulation the load is applied instantaneously whereas in the 
test the load was applied over a finite number of seconds resulting in lower strains. 
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Figure 12  Simulation of a creep test with CAPA-3D 
 

CONCLUSIONS AND FUTURE WORK 
A range of uniaxial creep tests has been undertaken for a polymer modified asphalt 

over a range of temperatures and stress conditions, in order to determine the parameters 
required for an elasto-visco-plastic constitutive model. Particular attention has been 
given to the determination of the parameters related to visco-plastic flow and damage 
accumulation at high strain levels. In the framework of the simple approach to damage 
of Continuum Damage Mechanics (CDM) Rabotnov’s theory has been used to describe 
damage growth. The elasto-visco-plastic constitutive model has been implemented into 
a Finite Element (FE) program and preliminary verification has been undertaken.   

Based on the fitting procedure described in this paper, it has been shown that 
starting from a typical laboratory testing  (creep/recovery tests) on asphalt mixtures, it is 
possible to determine the parameters of a relatively simple constitutive model (Burger’s 
model with one Voigt element, combined with Rabotnov’s damage law) that allows to 
account for the complex mechanical response (elastic, viscous, plastic and with damage) 
of an asphalt pavement when subject to a quasi-static load.  
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