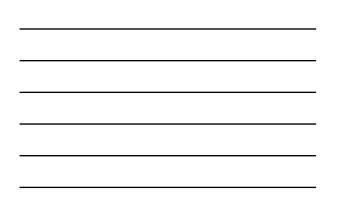


-							
	Tire Ch	ara	acteri	stics	-		
EUROPE							
Tire Type	Tire Size		Contac	t Width	Ov	erall-Diameter	
			(m	m)		(mm)	
Dual	11R22.5		18	34		1050	
Conventional	385/65R22.	5	28	35	1071		
Conventional	425/65R22.	5	30	8	1126		
First Generation	445/65R22.	5	34	10	1155		
EU	495/45R22.	5	42	27		1013	
North America	•						
Tire Type	Tire Size	Tire	e Pressure	Contact W	idth	Overall- Diameter	
Dural			(kPa)	(mm)		(mm)	
Dual	275/80R22.5		720	212.13		1044	
Second Generation	445/50R22.5		720	373.02		1028	
Second Generation	455/55R22.5		720	387.86		1079	

Wide-base Tire Characteristics Introduced to North America in 1982 Low Profile Design Relatively Uniform Contact

1980


- Pressure
 Design for High-Speed Long-
- Distance Carrier
- Relatively Reduced Empty Weight
- Efficient Fuel Consumption
 ILLINOIS

Dual/ 275

Tire Design Code • Dual Tire: • Nominal tire width range from 250~305mm • 12-22.5; 12R22.5; 275/80R22.5 • High Profile • Wide-Base Tire • Nominal tire width range from 400~460 mm • 385/65R22.5; 425/65R22.5; 455/55R22.5 • Low Profile • Code • Tire width (mm)/ tire aspect ratio (%)/ radial ply (R)/ rim diameter code (in)

Dual vs. Wide-Base Tires

- Wide-base tires have been used in Europe since the early 1980s
- In some countries more than 80% of trailers used wide-base tires
- Earlier generation of wide-base tires were proven more detrimental to flexible pavement systems than regular dual tires

I ILLINOIS

Impact of Early Wide-Base Tire

- Early generations are 385/65R22.5, 425/65R22.5, and 445/65R22.5:
 - -Required high inflation pressure (790 to 890kPa smaller contact area).
 - -Significantly increased pavement damage compared to dual tires:
 - Damage ratios ranged between 1.31 and 4.30.

1 ILLINOIS

Christison et al. (1980)

- In-field measured pavement responses
- Conventional wide-base tire induces more
 - damage than dual tire
 - →1.2~1.8 times more fatigue damage

Akram et al. (1992)

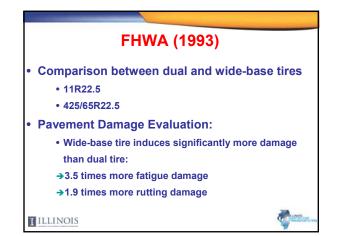
- Multi-Depth Deflectometer at a speed of 90 km/h
- Conventional wide-base tire

→Pavement life reduced by a factor of 2.5~2.8 when wide-base tire is used

I ILLINOIS

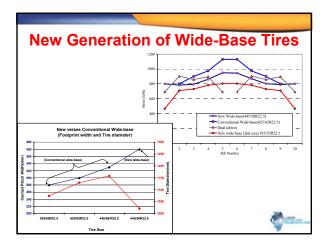
Penn State (1989)

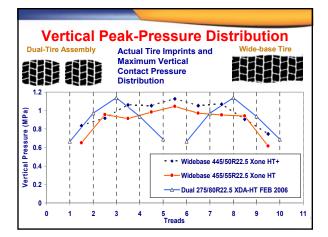
• Comparison between Dual and Wide-base Tires:


- 11R22.5, 245/75R22.5
- 385/65R22.5, 425/65R22.5
- Testing speed: 58 km/hr
- Pavement Damage Evaluation:
 - 10 and 45% fatigue damage model (Finn et al.1986)
 - Wide-base tire induces significantly more damage than dual tire (1.5 times more fatigue damage)

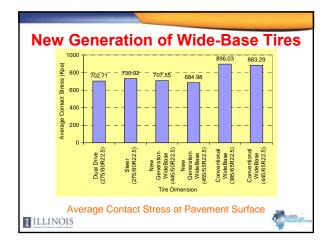
I ILLINOIS

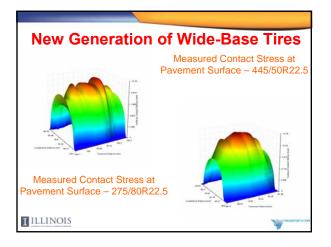
Huhtala et al. (1992)

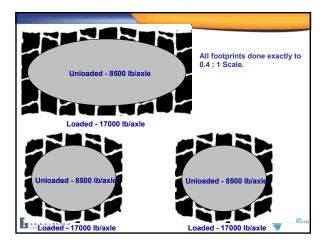

- Comparison between Dual and Wide-base Tires
 - 11R22.5, 265/70R19.5
 - 355/75R22.5, 385/65R22.5, 425/65R22.5
 - Test speed: 76 km/hr
- Pavement Damage Evaluation
 - Steering axle is the most detrimental
 - A drive axle equipped with wide-base tires is more damaging than dual-tires by a factor of 2.3 ~ 4.0.

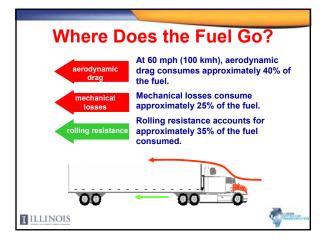


Dual vs. Wide-Base Tires Earlier generation of wide-base tires were detrimental to flexible pavement A new generation of wide-base tires has recently been introduced: Legalized in all states for 355.8kN GVW trucks 16-18% wider than the first generation: Makes use of a new crown architecture that allows wider widths at low aspect ratios Designed based on inch/width principle More uniform tire-pavement contact stress: Reduced tire pressure (690kPa) at high loads (151kN) Potential economic advantages







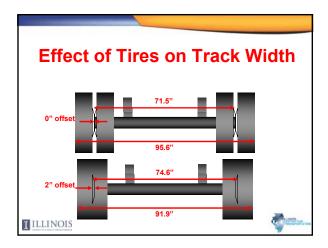


Fuel Economy/ Hauling Capacity

- Tire rolling resistance accounts for 35% of truck energy consumption
- Using the new generation of wide-base tires reduces rolling by 12%:
 - Reduction fuel consumption by an average of 4%
 - Savings of 400 gallons of fuel per year
 - A truck that uses 6.5 mpg on duals will be at 6.76 mpg or better with new wide-base generation
 - At 120,000 miles/year, the saving is 710 gallons (3230 liters) per vehicle per year
- Reduces truck weight by 410kg:
- Increases haling capacity by 2%

I ILLINOIS

Tire Cost and Repair, Truck Safety, and Ride Comfort


- Requires only one rim compared to two for dual tires
- Requires half the repair time needed for dual tires
- Handling is maintained even when two tires blow out
 - Requires regular monitoring of tire pressure (good practice for all tire types)
- Ride quality is improved by 12% compared to dual tires

Environment Impact

- Reduced gas emission: Reduction of 1.1 million metric tons of carbon equivalent by 2010 (assuming current market share, 5%)
- Reduce recycling impact of scrap tires:
 - 72.5kg of residual materials for dual tires vs.
 53.6kg for a wide-base tire assembly.

Canal State

I ILLINOIS

Areas of Research

- Dynamic impact of the tire (25% less than dual tires).
- Recapping of wide-base tires vs. dual tires
- Impact on road Infrastructure

The COST Action (2001)

• Introduced the concept of tire configuration factor (TCF):

 $TCF = (width / 470)^{-1.68} (length / 198)^{-0.85} (pres. ratio)^{0.81}$

			P	rimary Roads
Tire Type	W mm	D mm	TCF	Wide-base vs. dual
Dual (275/80R22.5)	368	1054	1.52	
Wide (445/50R22.5)	380	947	1.56	2.7%
Wide (455/55R22.5)	380	998	1.47	-3.1%

Al-Qadi et al. (2002)

- Heavily Instrumented Virginia Smart Road
- Comparison between dual and wide-base tires
 445/50R22.5, 455/55R22.5
 - Test parameters: speed, axle load, tire pressure
- Pavement Damage Evaluation:
 - Various transfer functions
 - Steering axle is the most detrimental
 - Wide-base is more fatigue damaging by a factor of 1.35.
 - Equivalent rutting damage
 - Wide-base is less damaging than dual in surface initiated topdown cracking by a factor of 0.45

Prophète et al. (2003)

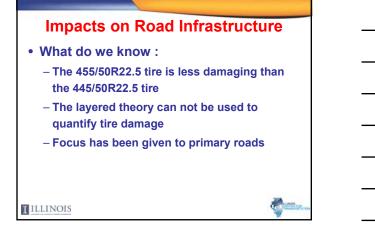
- Instrumented Pavement: Laval University
- Comparison between dual and wide-base tires
 385/65R22.5, 455/55R22.5
 - 50 km/hr, axle load, tire pressure
 - Wide-base (455) is more fatigue damaging by a factor of 1.54
 - Wide-base (455) is less rutting damaging by a factor of 0.17
 - Surface initiated top-down cracking is less damaging by 0.87 times

I ILLINOIS

NCAT Experimental Study (2005)

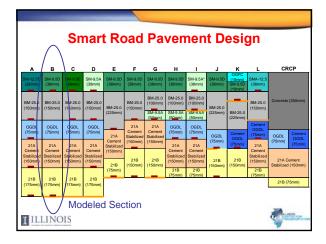
- Compared field responses of new generation of wide-base tires to dual tires
- · Measurements conducted at 72.4km/h
- Used measured strains at the bottom of HMA and vertical stress on top of subgrade

 Both Dual and wide-base tires configurations causes the same pavement damage

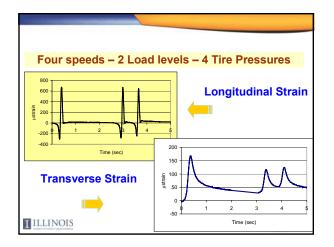

I ILLINOIS

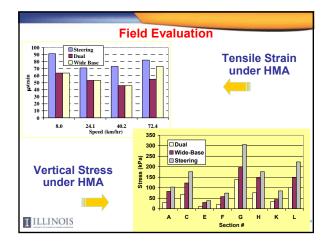
Impacts on Road Infrastructure

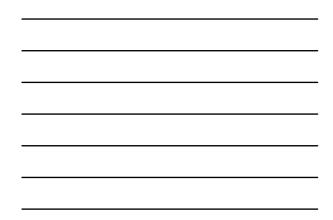
- Only a few studies on new wide-base tire
- What do we know:
 - The steering axle is the most damaging of all axles
 - Significantly less damage than the first widebase tire generations
 - Impact on the subgrade is similar to dual tires

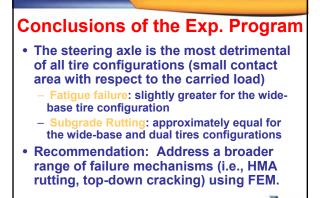

```
I ILLINOIS
```

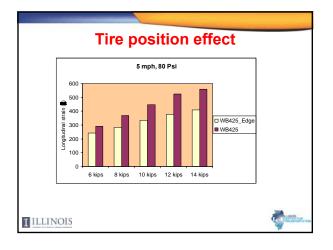

Field Testing

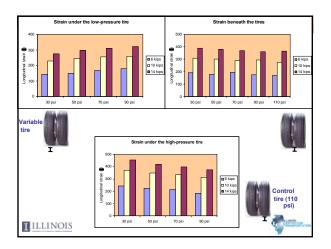

- Full-scale pavement testing at the Smart Road
- 12 different flexible pavement sections and a continuously reinforced concrete section.
- The flexible pavement sections were instrumented during construction with a comple array of pressure cells, strain gages, thermocouples, moisture probes, and frost probes.











Analytical Model Uniform Pressure Distribution model:

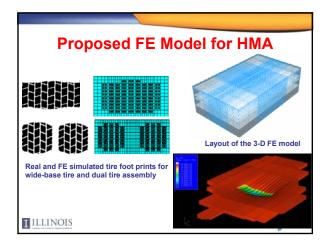
- Uniform Pressure Distribution model:
 - Original models developed by Boussinesq (1885) and Burmister (1954),
 - Uniform vertical pressure distribution
 - Circular areas
- Non-uniform Pressure Distribution Model
 - Nonuniform tire contact pressure model (Scharpery, 1980)
 - Distributions are actually non-uniform (Tielking, 1980)
 - Depended on the size and tire types (Roberts, 1987)
 - Tensile strain at the bottom of HMA results in excess of 100% higher than those for uniform pressure

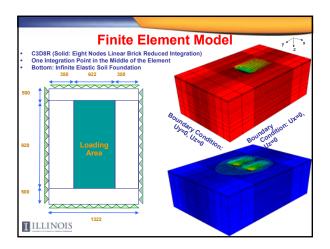
I ILLINOIS

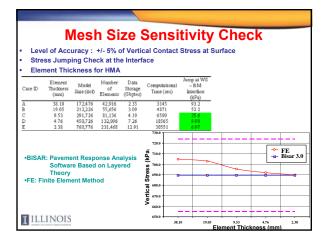
Limitations of the Layered Theory

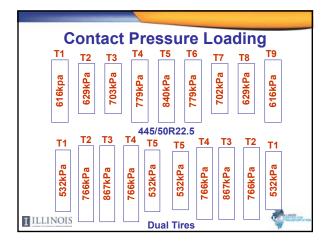
- Can not differentiate between wide-base tires or dual tires (i.e., 385/65R22.5 = 455/55R22.5 and 11R22.5 = 12R22.5).
- Improvement in pressure distribution in the new generation of wide-base tire may not be quantified.
- Vehicle speed has no effects on pavement damage.

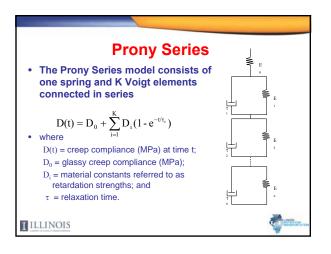
1 ILLINOIS

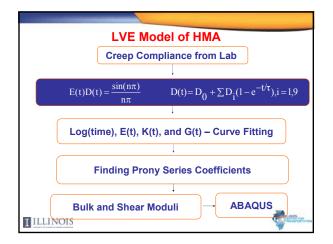


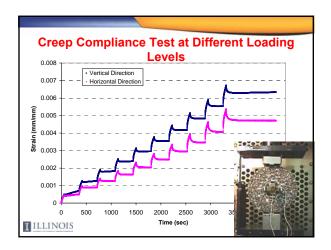

Theore	etical App	roaches
	Layered	
	Theory	Finite Element
Dimension	2D-Plane Stress	2D, 3D
Loading Area	Circular	Versatile
Stress	Uniform	Unif. or Nonunif.
Bonding	Fully Bonded	Bonded/Friction
Dynamic	No	Yes
Material	Elastic	Elastic/ Visco-elastic etc
I ILLINOIS		Service States and Service Services

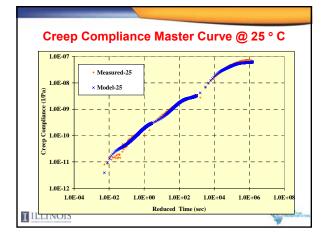

- International Advancement			
Finit	te Element	Approa	ches
	Axisymmetric	2D-Plane Strain	3D FE
Loading	Static	Static	Static/Dynamic
Loading Area	Circular Single	Line Load	Versatile
Computation Time and memory	Lowest	Middle	Highest Intensity
Interface Modeling	No	Partial	Yes
Discontinuity Modeling	No	Partial	Yes
Major Disadv	antage		Harrison non

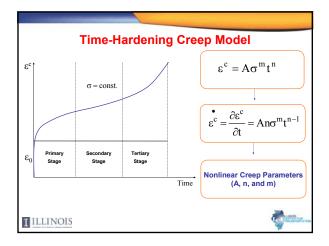




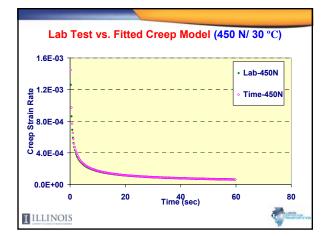


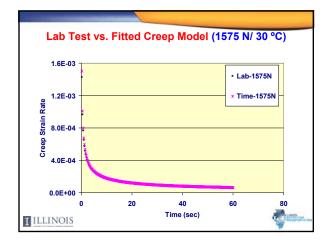




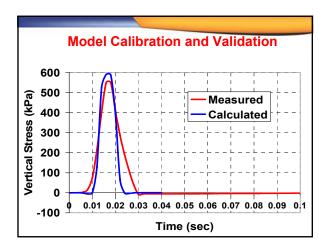


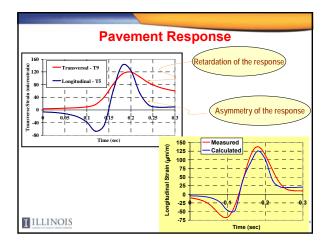


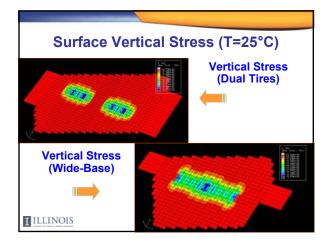


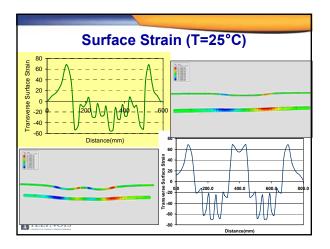


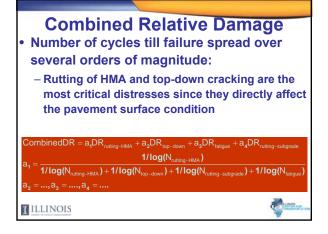
	TIME HAI	RDENING PARA	METERS	с	OEFFICIENT OF I	DETERMINATIO	N
MATERIALS	A	n	m	SSE	Ssy	MSE	RMSE
WS 20 deg	3.2800E-04	1.1301	-0.4189	2.969E-09	1.491E-07	5.620E-12	2.37065E-06
BM 20 deg	2.2500E-03	0.5566	-0.5979	6.385E-06	8.900E-05	2.668E-09	5.16527E-05
WS 30 deg	2.4800E-03	0.6961	-0.6134	4.594E-06	8.500E-05	1.920E-09	4.38178E-05
BM 30 deg	7.1200E-04	0.0292	-0.5756	1.800E-05	1.130E-04	7.588E-09	8.71091E-05
WS 40 deg	7.4500E-04	0.765	-0.4289	1.358E-08	9.307E-07	2.310E-11	4.80625E-06
BM 40 deg	1.6200E-04	0.0826	-0.307	2.902E-07	2.091E-06	4.940E-10	2.22261E-05

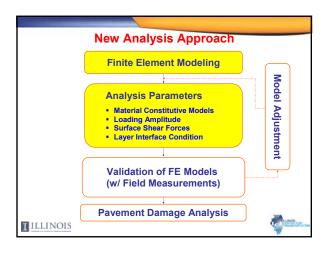


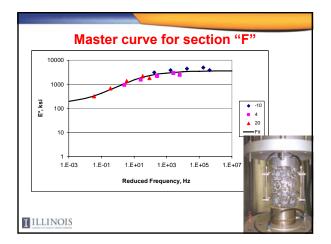




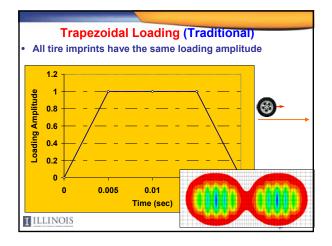


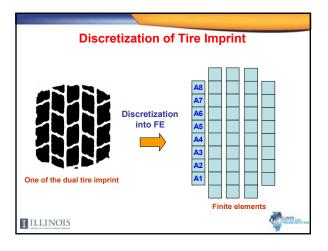


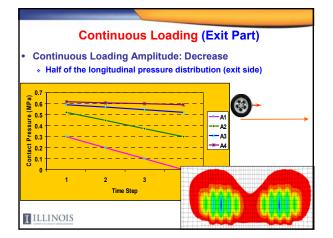


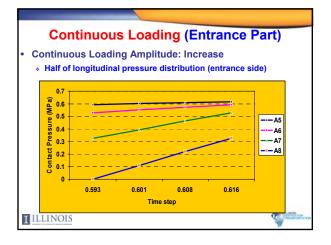


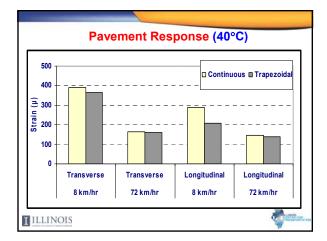
Al-Qad • Combined Da				orke	rs
Distress Tire	Α	В	С	D	CDR
445/50R22.5	2.25	1.43	1.13	0.76	1.19
455/55R22.5	1.83	1.34	0.97	0.25	1.07
A: Fatigue Cracking, B:	Subgrade	Rutting	, C: HMA	Rutting, I	D: Top-down
TILLINOIS					E utter

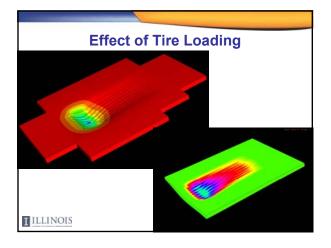




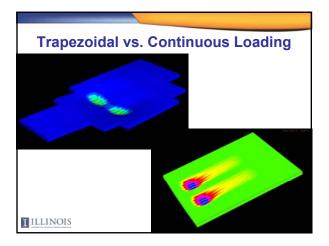


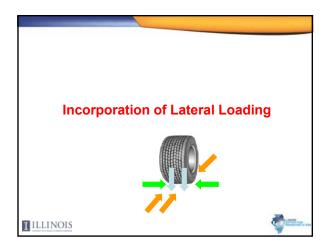


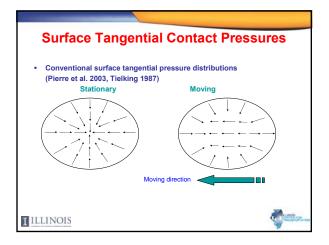


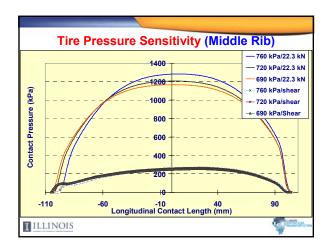


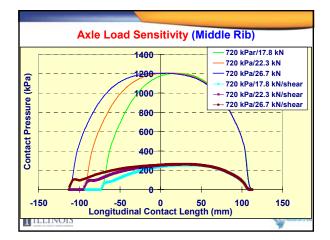
1		ning						-					
• [Dual t	ire											
hab YDA	2- dual 6.9b (
April ADAG				Tread A	в	с	D	Е	F	G	н	1	J
	ELEMENT	Weight F for EL 6	Weight F for EL 8	0.641	0.872	0.968	0.858	0.641	0.641	0.872	0.988	0.858	0.64
	10		0.425		0.371	0.420	0.365			0.371		0.365	
	9	0.488	0.752	0.313	0.656	0.743	0.645	0.313	0.313	0.656	0.743	0.645	0.31
entrance	8	0.850	0.935	0.545	0.815	0.924	0.802	0.545	0.545	0.815	0.924	0.802	0.54
	7	0.975	0.985	0.625	0.859	0.973	0.845	0.625	0.625	0.859	0.973	0.845	0.62
	6	0.960	0.970	0.615	0.846	0.958	0.832	0.615	0.615	0.846			0.61
	5	0.805	0.898	0.516	0.783	0.887	0.770	0.516	0.516	0.783	0.887	0.770	0.51
	4	0.405	0.700	0.260	0.610	0.692	0.601	0.260	0.260	0.610	0.692	0.601	0.26
exit	3		0.327		0.285	0.323	0.281			0.285	0.323	0.281	
	2												
	1										0.020	0.201	
	1											0.201	
	1		_									0.101	
• •	vide-	base 45	5										
	1 Vide- 7.2bar) Final	base 45	5		Fread A	3 1		D	E	F	G	н	1
			5 Weight F for EL 8 W		Fread A 1	3 (0.830	0.884	D 0.940	E 0.956	F 0.940			0.500
	7.2bar)_Final										G	н	I 0.500
	7.2bar)_Final ELEMENT 10 9	Weight F for EL 7	Weight F for EL 8 W 0.500 0.820	eight F for EL 9 0.476 0.790	0.500 0.265	0.830 0.415 0.681	0.884 0.442 0.725	0.940 0.447 0.743	0.958 0.455 0.755	0.940 0.447 0.743	G 0.884 0.442 0.725	H 0.830 0.415 0.681	0.26
	7.2bar)_Final ELEMENT 10 9 8	Weight F for EL 7	Weight F for EL 8 W 0.500 0.820 0.940	eight F for EL 9 0.476 0.790 0.915	0.500 0.265 0.429	0.830 0.415 0.681 0.780	0.884 0.442 0.725 0.831	0.940 0.447 0.743 0.860	0.956 0.455 0.755 0.875	0.940 0.447 0.743 0.860	G 0.884 0.442 0.725 0.831	H 0.830 0.415 0.681 0.780	0.26 0.42
55_new (7.2bar)_Final ELEMENT 10 9 8 7	Weight F for EL 7 1 0.530 0.858 0.962	Weight F for EL 8 W 0.500 0.820 0.940 0.990	eight F for EL 9 0.476 0.790 0.915 0.978	0.500 0.265 0.429 0.481	0.830 0.415 0.681 0.780 0.822	0.884 0.442 0.725 0.831 0.875	0.940 0.447 0.743 0.860 0.919	0.956 0.455 0.755 0.875 0.935	0.940 0.447 0.743 0.860 0.919	G 0.884 0.442 0.725 0.831 0.875	H 0.830 0.415 0.681 0.780 0.822	0.26 0.42 0.48
55_new (7.2bar)_Final ELEMENT 10 9 8 7 6	Weight F for EL 7 1 0.530 0.858 0.962 1.000	Weight F for EL 8 W 0.500 0.820 0.940 0.990 0.990	eight F for EL 9 0.476 0.790 0.915 0.978 1.000	0.500 0.265 0.429 0.481 0.500	0.830 0.415 0.681 0.780 0.822 0.822	0.884 0.442 0.725 0.831 0.875 0.875	0.940 0.447 0.743 0.860	0.958 0.455 0.755 0.875 0.935 0.956	0.940 0.447 0.743 0.860 0.919 0.940	G 0.884 0.442 0.725 0.831 0.875 0.875	H 0.830 0.415 0.681 0.780 0.822 0.822	0.26 0.42 0.48 0.50
55_new (7.2bar)_Final ELEMENT 10 9 8 7 6 5	Weight F for EL 7 1 0.530 0.858 0.962 1.000 0.960	Weight F for EL 8 W 0.500 0.820 0.940 0.990 0.990 0.935	eight F for EL 9 0.476 0.790 0.915 0.978 1.000 0.975	0.500 0.265 0.429 0.481 0.500 0.480	0.830 0.415 0.681 0.780 0.822 0.822 0.822 0.776	0.884 0.442 0.725 0.831 0.875 0.875 0.875 0.827	0.940 0.447 0.743 0.860 0.919 0.940 0.940	0.956 0.455 0.755 0.875 0.935 0.956 0.932	0.940 0.447 0.743 0.860 0.919 0.940 0.917	G 0.884 0.442 0.725 0.831 0.875 0.875 0.875	H 0.830 0.415 0.681 0.780 0.822 0.822 0.822	0.26 0.42 0.48 0.50 0.48
55_new (7.2bar)_Final ELEMENT 10 9 8 7 6 5 4	Weight F for EL7 1 0.530 0.858 0.962 1.000 0.960 0.845	Weight F for EL 8 W 0.500 0.820 0.940 0.990 0.990 0.935 0.810	eight F for EL9 0.476 0.790 0.915 0.978 1.000 0.975 0.910	0.500 0.265 0.429 0.481 0.500 0.480 0.480 0.423	0.830 0.415 0.681 0.780 0.822 0.822 0.822 0.776 0.672	0.884 0.442 0.725 0.831 0.875 0.875 0.827 0.716	0.940 0.447 0.743 0.860 0.919 0.940 0.917 0.855	0.956 0.455 0.755 0.875 0.935 0.935 0.932 0.932 0.870	0.940 0.447 0.743 0.860 0.919 0.940 0.917 0.855	G 0.884 0.442 0.725 0.831 0.875 0.875 0.827 0.216	H 0.830 0.415 0.681 0.780 0.822 0.822 0.822 0.822 0.822 0.822	0.26 0.42 0.48 0.50 0.48 0.42
55_new (7.2bar)_Final ELEMENT 10 9 8 7 6 5	Weight F for EL 7 1 0.530 0.858 0.962 1.000 0.960	Weight F for EL 8 W 0.500 0.820 0.940 0.990 0.990 0.935	eight F for EL 9 0.476 0.790 0.915 0.978 1.000 0.975	0.500 0.265 0.429 0.481 0.500 0.480	0.830 0.415 0.681 0.780 0.822 0.822 0.822 0.776	0.884 0.442 0.725 0.831 0.875 0.875 0.875 0.827	0.940 0.447 0.743 0.860 0.919 0.940 0.940	0.956 0.455 0.755 0.875 0.935 0.956 0.932	0.940 0.447 0.743 0.860 0.919 0.940 0.917	G 0.884 0.442 0.725 0.831 0.875 0.875 0.875	H 0.830 0.415 0.681 0.780 0.822 0.822 0.822	0.26 0.42 0.48 0.50 0.48

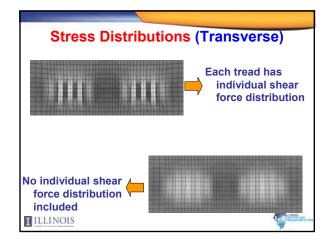


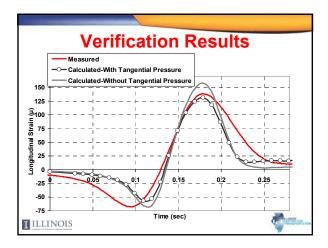


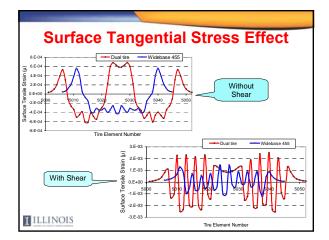


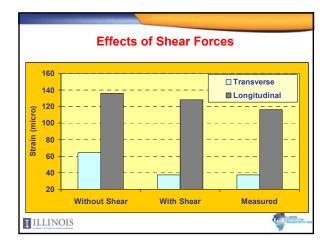






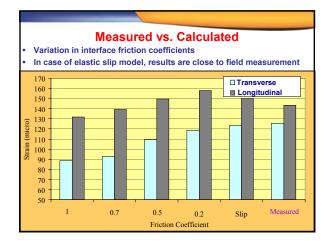




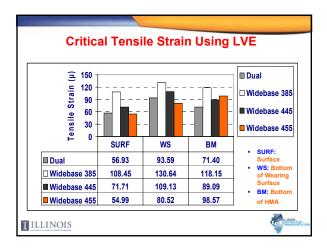


Surface Shear Forces

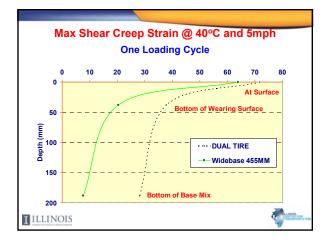
- Transverse Shear Forces
 - Induce higher stresses than longitudinal shear forces at the pavement surface
- Longitudinal Shear Forces
 - Balance their responses due to force-direction changes (compression to tension)

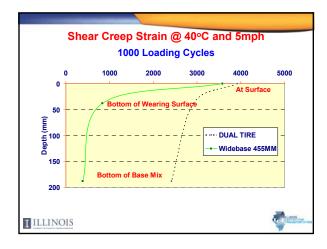

I ILLINOIS

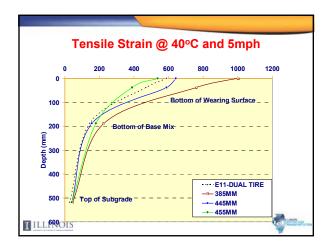
Interface Friction

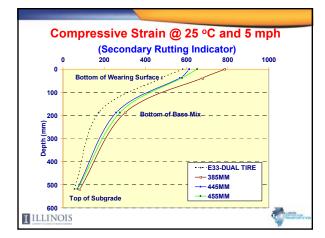

- Simple Friction Model: Friction Coefficient Control
 - Model characterized by the Coulomb friction coefficient, μ
 - Resistance to movement is proportional to normal pressure at interface

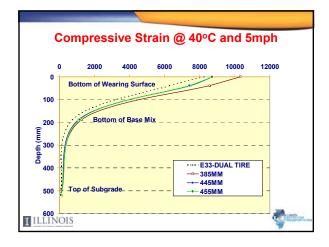
• Elastic Slip Model: Max. Shear Stress Control


• Shear stress and displacement are linearly dependent until shear stress equals shear strength; then converted to the Coulomb friction condition





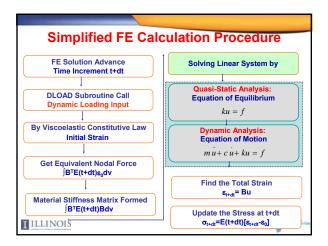




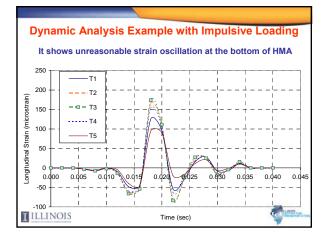
Why Dynamic Analysis Is Needed?

- Quasi-static visco analysis:
 - \checkmark Does not consider the mass inertia and damping forces
- Oynamic analysis
 - ✓ Considers mass inertia and damping forces effect on pavement responses
 - ✓ Different contact areas of tire imprint can affect the magnitude of inertia forces
 - ✓ Pavement response is affected by loading amplitude
- Need proper energy dissipation algorithm such as, structural damping, mass damping, friction and visco-elastic material property

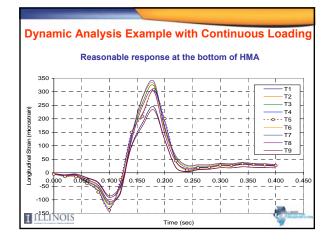
I ILLINOIS

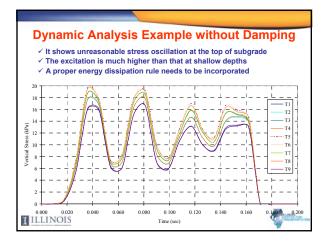

Various Dynamic Analysis Approaches

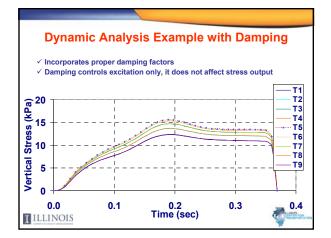
Implicit Dynamic Analysis

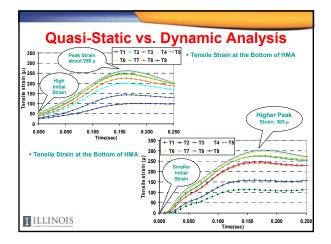

✓ Advantage: Unconditionally Stable/ Very Small Error

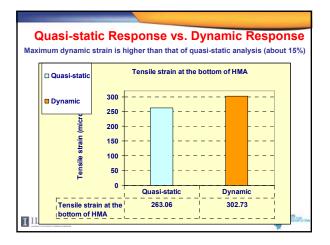
- ✓ Disadvantage: Long Analysis Time
- Explicit Dynamic Analysis
 - ✓ Advantage: Short Analysis Time
 - ✓ Disadvantage: Conditionally Stable/ High Error
- Modal/Subspace Dynamic Analysis
 - ✓ Only Applicable to the Linear System

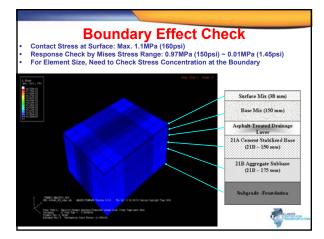


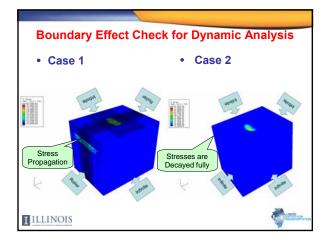


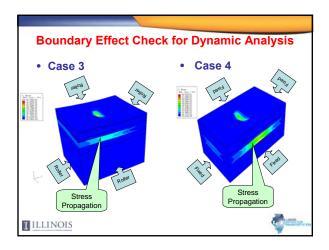


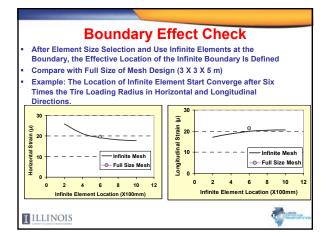


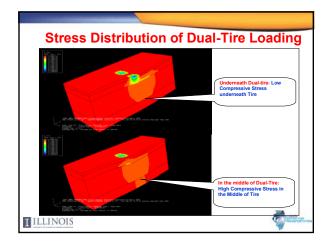


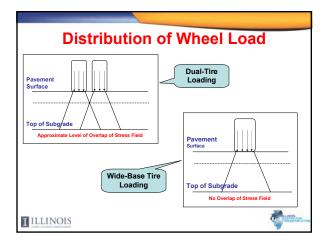


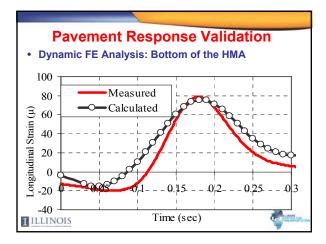


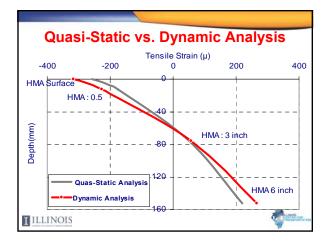


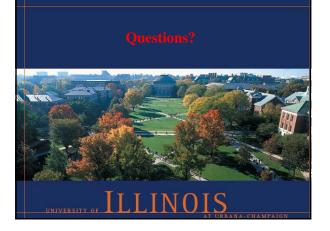












Summary

- VE FE modeling should be used to quantify tire damage to pavements:
 - Continuous Loading Better Simulates Field Loading Conditions
 - Surface Shear Should Be Considered _
 - Interface Stresses Should Be Appropriately Modeled _
 - Dynamic Analysis Will Enhance The Model Prediction Capabilities
- · Results of the developed FE models are in reasonable agreement with experimental measurements.
- Damage Comparison: Fatigue Primary Rutting Secondary Rutting Top Down Cracking •

- Pavement damage of wide-base should be evaluated in the context of other benefits of pavements

