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Tire Characteristics

1013427495/45R22.5EU

1155340445/65R22.5First Generation

1126308425/65R22.5Conventional 

1071285385/65R22.5Conventional 

105018411R22.5Dual 

(mm)(mm)

Overall-DiameterContact WidthTire SizeTire Type

EUROPE

1079387.86720455/55R22.5Second Generation

1028373.02720445/50R22.5Second Generation

1044212.13720275/80R22.5Dual
(mm)(mm)(kPa)

Overall-
DiameterContact WidthTire PressureTire SizeTire Type

North America 

• Introduced to North America in 
1982 

• Low Profile Design
• Relatively Uniform Contact 

Pressure 
• Design for High-Speed Long-

Distance Carrier
• Relatively Reduced Empty 

Weight
• Efficient Fuel Consumption

Wide-base Tire Characteristics

1980 1982 2000
2002 2000

385 425 445/455 495

Dual/ 275

• Dual Tire:
• Nominal tire width range from 250~305mm 
• 12-22.5; 12R22.5; 275/80R22.5
• High Profile

• Wide-Base Tire
• Nominal tire width range from 400~460 mm
• 385/65R22.5; 425/65R22.5; 455/55R22.5 
• Low Profile

• Code
• Tire width (mm)/ tire aspect ratio (%)/ radial ply 

(R)/ rim diameter code (in)

Tire Design Code 



3

Cross-section of Tire 
• Aspect Ratio: the ratio of section height to width
• Bias Ply: High tire profile - High rolling dynamic 

stress
• Radial Ply: Low tire profile - low rolling dynamic 

stress

Dual vs. Wide-Base Tires
• Wide-base tires have been used 

in Europe since the early 1980s
• In some countries more than 

80% of trailers used wide-base 
tires

• Earlier generation of wide-base 
tires were proven more 
detrimental to flexible 
pavement systems than regular 
dual tires

Impact of Early Wide-Base Tire

• Early generations are 385/65R22.5, 
425/65R22.5, and 445/65R22.5:
–Required high inflation pressure (790 to 

890kPa – smaller contact area).
–Significantly increased pavement damage 

compared to dual tires:
• Damage ratios ranged between 1.31 and 4.30.
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Christison et al. (1980)
– In-field measured pavement responses
– Conventional wide-base tire induces more 

damage than dual tire 
1.2~1.8 times more fatigue damage

Akram et al. (1992)
• Multi-Depth Deflectometer at a speed of 90 km/h
• Conventional wide-base tire

Pavement life reduced by a factor of 2.5~2.8 when 
wide-base tire is used

• Comparison between Dual and Wide-base Tires:
• 11R22.5, 245/75R22.5

• 385/65R22.5, 425/65R22.5

• Testing speed: 58 km/hr

• Pavement Damage Evaluation:
• 10 and 45% fatigue damage model (Finn et al.1986)

• Wide-base tire induces significantly more damage 
than dual tire (1.5 times more fatigue damage)

Penn State (1989)

• Comparison between Dual and Wide-base Tires
• 11R22.5, 265/70R19.5
• 355/75R22.5, 385/65R22.5, 425/65R22.5
• Test speed: 76 km/hr

• Pavement Damage Evaluation
• Steering axle is the most detrimental
• A drive axle equipped with wide-base tires is more 

damaging than dual-tires by a factor of 2.3 ~ 4.0.

Huhtala et al. (1992)
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FHWA (1993)

• Comparison between dual and wide-base tires
• 11R22.5
• 425/65R22.5

• Pavement Damage Evaluation:
• Wide-base tire induces significantly more damage 

than dual tire: 
3.5 times more fatigue damage
1.9 times more rutting damage

Dual vs. Wide-Base Tires
• Earlier generation of wide-base tires were 

detrimental to flexible pavement
• A new generation of wide-base tires has recently 

been introduced:
Legalized in all states for 355.8kN GVW trucks
16-18% wider than the first generation:

Makes use of a new crown architecture that allows wider 
widths at low aspect ratios
Designed based on inch/width principle

More uniform tire-pavement contact stress:
Reduced tire pressure (690kPa) at high loads (151kN)

Potential economic advantages

New vs. Old - Design

425/65R22.5 XZY

Unique Infini-CoilTM technology.
¼ mile of continuous steel cable to 

help eliminate casing growth
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New Generation of Wide-Base Tires
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New Generation of Wide-Base Tires
Measured Contact Stress at 

Pavement Surface – 445/50R22.5

Measured Contact Stress at 
Pavement Surface – 275/80R22.5

Unloaded - 8500 lb/axle

Unloaded - 8500 lb/axle

Loaded - 17000 lb/axle

Unloaded - 8500 lb/axle

Loaded - 17000 lb/axle

All footprints done exactly to
0.4 : 1 Scale.

Loaded - 17000 lb/axle

Why Wide-Base Tires NOW?
• Substantial savings to truck freight 

transportation:
– Fuel economy
– Increase hauling capacity (increase payload)
– Reduced tire cost and repair
– Ride and comfort
– Reduced emission and noise
– Reduced recycling impact of scrap tires
– Better handling, braking, and safety

Impact on Road Infrastructure?
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At 60 mph (100 kmh), aerodynamic 
drag consumes approximately 40% of 
the fuel.
Mechanical losses consume 
approximately 25% of the fuel. 
Rolling resistance accounts for 
approximately 35% of the fuel 
consumed. 

aerodynamic 
drag

Where Does the Fuel Go?

mechanical 
losses

rolling resistance

Fuel Economy/ Hauling Capacity
• Tire rolling resistance accounts for 35% of 

truck energy consumption
• Using the new generation of wide-base 

tires reduces rolling by 12%:
– Reduction fuel consumption by an average of 

4%
– Savings of 400 gallons of fuel per year

• A truck that uses 6.5 mpg on duals will be at 6.76 
mpg or better with new wide-base generation

• At 120,000 miles/year, the saving is 710 gallons (3230 
liters) per vehicle per year

• Reduces truck weight by 410kg:
– Increases haling capacity by 2%

Tire Cost and Repair, Truck 
Safety, and Ride Comfort

• Requires only one rim compared to two for dual 
tires

• Requires half the repair time needed for dual tires
• Handling is maintained even when two tires blow 

out
– Requires regular monitoring of tire pressure 

(good practice for all tire types)
• Ride quality is improved by 12% compared to dual 

tires
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Environment Impact

• Reduced gas emission:  Reduction of 1.1 
million metric tons of carbon equivalent 
by 2010 (assuming current market share, 
5%)

• Reduce recycling impact of scrap tires:
– 72.5kg of residual materials for dual tires vs. 

53.6kg for a wide-base tire assembly.

95.6”

71.5”

0” offset

91.9”

74.6”

2” offset

Effect of Tires on Track Width

Areas of Research
• Dynamic impact of the tire (25% less 

than dual tires).
• Recapping of wide-base tires vs. dual 

tires
• Impact on road Infrastructure
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Cost 334 Action in Europe (1997~2001)
• APT and instrumented pavement (17 tire 

assemblies)
• Intensive research on the effect of wide-base 

tires
– Tire type, axle load, tire pressure, and pavement 

design
• Pavement Damage Evaluation:

– Developed Tire Configuration Factor (TCF) by 
stepwise regression analysis

– Suggested the use of wide-base tires on the steering 
axle 

– Top down crack was not considered

The COST Action (2001)

-3.1%1.47998380Wide (455/55R22.5)
2.7%1.56947380Wide (445/50R22.5)
----1.521054368Dual (275/80R22.5)

Wide-base vs. 
dualTCFD

mm
W

mmTire Type

Primary Roads

• Introduced the concept of tire 
configuration factor (TCF):

81.085.068.1 )ratio.pres()198/length()470/width(TCF −−=

Al-Qadi et al. (2002)
• Heavily Instrumented Virginia Smart Road
• Comparison between dual and wide-base tires

– 445/50R22.5, 455/55R22.5
– Test parameters: speed, axle load, tire pressure

• Pavement Damage Evaluation:
– Various transfer functions
– Steering axle is the most detrimental
– Wide-base is more fatigue damaging by a factor of 1.35.
– Equivalent rutting damage 
– Wide-base is less damaging than dual in surface initiated top-

down cracking by a factor of 0.45
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Prophète et al. (2003)
• Instrumented Pavement: Laval University
• Comparison between dual and wide-base tires

• 385/65R22.5, 455/55R22.5
• 50 km/hr, axle load, tire pressure
• Wide-base (455) is more fatigue damaging by a factor of 1.54
• Wide-base (455) is less rutting damaging by a factor of 0.17
• Surface initiated top-down cracking is less damaging by 0.87 

times 

NCAT Experimental Study (2005)
• Compared field responses of new generation of 

wide-base tires to dual tires
• Measurements conducted at 72.4km/h
• Used measured strains at the bottom of HMA and 

vertical stress on top of subgrade

• Both Dual and wide-base 
tires configurations 
causes the same 
pavement damage

Impacts on Road Infrastructure
• Only a few studies on new wide-base tire
• What do we know:

– The steering axle is the most damaging of all 
axles

– Significantly less damage than the first wide-
base tire generations

– Impact on the subgrade is similar to dual tires



12

Impacts on Road Infrastructure
• What do we know :

– The 455/50R22.5 tire is less damaging than 
the 445/50R22.5 tire

– The layered theory can not be used to 
quantify tire damage

– Focus has been given to primary roads

• Full-scale pavement testing at the Smart Road

• 12 different flexible pavement sections and a 
continuously reinforced concrete section.

• The flexible pavement sections were 
instrumented during construction with a complex 
array of pressure cells, strain gages, 
thermocouples, moisture probes, and frost 
probes.

Field Testing

Smart Road Pavement Design
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Al-Qadi and Co-Workers
• Testing at the Virginia Smart Road 

(2000-2002):

Four speeds – 2 Load levels – 4 Tire Pressures

Longitudinal Strain

Transverse Strain
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Conclusions of the Exp. Program
• The steering axle is the most detrimental 

of all tire configurations (small contact 
area with respect to the carried load)
– Fatigue failure: slightly greater for the wide-

base tire configuration
– Subgrade Rutting: approximately equal for 

the wide-base and dual tires configurations
• Recommendation:  Address a broader 

range of failure mechanisms (i.e., HMA 
rutting, top-down cracking) using FEM. 

Accelerated Loading Facility

Tire position effect
5 mph, 80 Psi
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Strain under the low-pressure tire
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Analytical Model 
• Uniform Pressure Distribution model:

• Original models developed by Boussinesq (1885) and 
Burmister (1954), 

• Uniform vertical pressure distribution
• Circular areas

• Non-uniform Pressure Distribution Model
• Nonuniform tire contact pressure model (Scharpery, 

1980) 
• Distributions are actually non-uniform (Tielking, 1980)
• Depended on the size and tire types (Roberts, 1987)

– Tensile strain at the bottom of HMA results in excess of 
100% higher than those for uniform pressure

Limitations of the Layered Theory

• Can not differentiate between wide-base 
tires or dual tires (i.e., 385/65R22.5 = 
455/55R22.5 and 11R22.5 = 12R22.5).

• Improvement in pressure distribution in 
the new generation of wide-base tire may 
not be quantified.

• Vehicle speed has no effects on pavement 
damage.
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Theoretical Approaches 

Unif. or Nonunif.UniformStress

2D, 3D2D-Plane 
Stress

Dimension
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ElasticMaterial
YesNoDynamic
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Finite Element
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Finite Element Approaches 

Partial

Partial

Middle

Line Load
Static

2D-Plane 
Strain

Highest 
IntensityLowest

Computation
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3D FEAxisymmetric

Major Disadvantage

Proposed FE Model for HMA

Layout of the 3-D FE model

           

 

Real and FE simulated tire foot prints for 
wide-base tire and dual tire assembly 
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Finite Element Model
• C3D8R (Solid: Eight Nodes Linear Brick Reduced Integration)
• One Integration Point in the Middle of the Element
• Bottom: Infinite Elastic Soil Foundation
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Material Characterization
• HMA materials: Linear viscoelastic 

constitutive model
– Indirect resilient modulus and creep 

compliance
– Prony Series Expansion

• Granular materials: Linear elastic 
constitutive model

– Nondestructive testing (FWD)

Prony Series
• The Prony Series model consists of 

one spring and K Voigt elements 
connected in series  

• where
D(t) = creep compliance (MPa) at time t; 
D0 = glassy creep compliance (MPa);
Di = material constants referred to as 

retardation strengths; and 
τ = relaxation time.
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Surface Strain (T=25°C)
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Combined Relative Damage
• Number of cycles till failure spread over 

several orders of magnitude:
– Rutting of HMA and top-down cracking are the 

most critical distresses since they directly affect 
the pavement surface condition
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• Combined Damage Ratios:



23

New Analysis Approach

Finite Element Modeling

Analysis Parameters
Material Constitutive Models
Loading Amplitude
Surface Shear Forces 
Layer Interface Condition

Validation of FE Models 
(w/ Field Measurements)

Pavement Damage Analysis
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Trapezoidal Loading (Traditional)
• All tire imprints have the same loading amplitude

0

0.2

0.4

0.6

0.8

1

1.2

0 0.005 0.01 0.015 0.02
Time (sec)

Lo
ad

in
g 

A
m

pl
itu

de



24

Discretization of Tire Imprint 
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Discretization
into FE

One of the dual tire imprint

Finite elements

• Continuous Loading Amplitude: Decrease
Half of the longitudinal pressure distribution (exit side)
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• Continuous Loading Amplitude: Increase

Half of longitudinal pressure distribution (entrance side)
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Assigning pressure data to the FE of tire imprint

8kph XDA2- dual 6.9b_6.9b
Tread A B C D E F G H I J

ELEMENT Weight F for EL 6 Weight F for EL 8 0.641 0.872 0.988 0.858 0.641 0.641 0.872 0.988 0.858 0.641
10 0.425 0.371 0.420 0.365 0.371 0.420 0.365
9 0.488 0.752 0.313 0.656 0.743 0.645 0.313 0.313 0.656 0.743 0.645 0.313
8 0.850 0.935 0.545 0.815 0.924 0.802 0.545 0.545 0.815 0.924 0.802 0.545
7 0.975 0.985 0.625 0.859 0.973 0.845 0.625 0.625 0.859 0.973 0.845 0.625
6 0.960 0.970 0.615 0.846 0.958 0.832 0.615 0.615 0.846 0.958 0.832 0.615
5 0.805 0.898 0.516 0.783 0.887 0.770 0.516 0.516 0.783 0.887 0.770 0.516
4 0.405 0.700 0.260 0.610 0.692 0.601 0.260 0.260 0.610 0.692 0.601 0.260
3 0.327 0.285 0.323 0.281 0.285 0.323 0.281
2
1

entrance

exit

455_new (7.2bar)_Final Tread A B C D E F G H I
ELEMENT Weight F for EL 7 Weight F for EL 8 Weight F for EL 9 0.500 0.830 0.884 0.940 0.956 0.940 0.884 0.830 0.500

10 0.500 0.476 0.415 0.442 0.447 0.455 0.447 0.442 0.415
9 0.530 0.820 0.790 0.265 0.681 0.725 0.743 0.755 0.743 0.725 0.681 0.265
8 0.858 0.940 0.915 0.429 0.780 0.831 0.860 0.875 0.860 0.831 0.780 0.429
7 0.962 0.990 0.978 0.481 0.822 0.875 0.919 0.935 0.919 0.875 0.822 0.481
6 1.000 0.990 1.000 0.500 0.822 0.875 0.940 0.956 0.940 0.875 0.822 0.500
5 0.960 0.935 0.975 0.480 0.776 0.827 0.917 0.932 0.917 0.827 0.776 0.480
4 0.845 0.810 0.910 0.423 0.672 0.716 0.855 0.870 0.855 0.716 0.672 0.423
3 0.485 0.450 0.770 0.243 0.374 0.398 0.724 0.736 0.724 0.398 0.374 0.243
2 0.420 0.395 0.402 0.395
1

entrance

exit

• Dual tire

• Wide-base 455
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Trapezoidal vs. Continuous Loading

Incorporation of Lateral Loading

• Conventional surface tangential pressure distributions
(Pierre et al. 2003, Tielking 1987)

Stationary Moving

Surface Tangential Contact Pressures 

Moving direction 
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Tire Pressure Sensitivity (Middle Rib)
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Verification Results
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Surface Shear Forces
Transverse Shear Forces
• Induce higher stresses than longitudinal shear 

forces at the pavement surface 

Longitudinal Shear Forces
• Balance their responses due to force-direction 

changes (compression to tension)

Interface Friction
Simple Friction Model: Friction Coefficient 
Control
• Model characterized by the Coulomb friction 

coefficient, μ
• Resistance to movement is proportional to normal 

pressure at interface

Elastic Slip Model: Max. Shear Stress Control
• Shear stress and displacement are linearly 

dependent until shear stress equals shear strength; 
then converted to the Coulomb friction condition 

Measured vs. Calculated
• Variation in interface friction coefficients
• In case of elastic slip model, results are close to field measurement
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Widebase 385

Widebase 445

Widebase 455

Dual 56.93 93.59 71.40
Widebase 385 108.45 130.64 118.15
Widebase 445 71.71 109.13 89.09
Widebase 455 54.99 80.52 98.57

SURF WS BM

Critical Tensile Strain Using LVE

• SURF: 
Surface

• WS: Bottom 
of Wearing 
Surface

• BM: Bottom 
of HMA

Max Shear Creep Strain @ 40oC and 5mph
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Dynamic Analysis
When a heavy vehicle travels on a pavement, 
its axle load does not maintain steady state; 
but varies even on a smooth road (dynamic 

oscillation varies by +/-15%) 

Why Dynamic Analysis Is Needed?
Quasi-static visco analysis: 

Does not consider the mass inertia and damping forces  

Dynamic analysis
Considers mass inertia and damping forces effect on 
pavement responses

Different contact areas of tire imprint can affect the 
magnitude of inertia forces

Pavement response is affected by loading amplitude

Need proper energy dissipation algorithm such as, 
structural damping, mass damping, friction and 
visco-elastic material property

Various Dynamic Analysis Approaches
Implicit Dynamic Analysis

Advantage: Unconditionally Stable/ Very Small Error

Disadvantage: Long Analysis Time

Explicit Dynamic Analysis
Advantage: Short Analysis Time 

Disadvantage: Conditionally Stable/ High Error

Modal/Subspace Dynamic Analysis 
Only Applicable to the Linear System
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Quasi-Static Analysis:
Equation of EquilibriumDLOAD Subroutine Call

Dynamic Loading Input

Simplified FE Calculation Procedure
FE Solution Advance
Time Increment t+dt

Get Equivalent Nodal Force
BTE(t+dt)ε0dv

Material Stiffness Matrix Formed
BTE(t+dt)Bdv

Find the Total Strain
εt+dt= Bu

Update the Stress at t+dt
σt+dt=E(t+dt)[εt+dt-ε0]

Dynamic Analysis: 
Equation of Motion

fkuucum
...

=++

fku =

Solving Linear System by

By Viscoelastic Constitutive Law
Initial Strain

∫

∫
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Dynamic Analysis Example with Impulsive Loading

It shows unreasonable strain oscillation at the bottom of HMA
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Dynamic Analysis Example with Continuous Loading

Reasonable response at the bottom of HMA
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Dynamic Analysis Example without Damping
It shows unreasonable stress oscillation at the top of subgrade
The excitation is much higher than that at shallow depths
A proper energy dissipation rule needs to be incorporated 
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Dynamic Analysis Example with Damping

Incorporates proper damping factors 
Damping controls excitation only, it does not affect stress output 
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Quasi-Static vs. Dynamic Analysis
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Tensile strain at the bottom of HMA
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Quasi-static Dynamic

Quasi-static Response vs. Dynamic Response
Maximum dynamic strain is higher than that of quasi-static analysis (about 15%) 

Boundary Effect Check
• Contact Stress at Surface: Max. 1.1MPa (160psi)
• Response Check by Mises Stress Range: 0.97MPa (150psi) ~ 0.01MPa (1.45psi)
• For Element Size, Need to Check Stress Concentration at the Boundary

Boundary Effect Check for Dynamic Analysis

• Case 1 • Case 2

Stress 
Propagation

Stresses are 
Decayed fully
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Boundary Effect Check for Dynamic Analysis

• Case 3 • Case 4

Roller

Roller

Roller
Roller

Fixed

Fixe
d

Fixe
d

Fixed

Stress 
Propagation

Stress 
Propagation

Boundary Effect Check 
After Element Size Selection and Use Infinite Elements at the 
Boundary, the Effective Location of the Infinite Boundary Is Defined
Compare with Full Size of Mesh Design (3 X 3 X 5 m)
Example: The Location of Infinite Element Start Converge after Six 
Times the Tire Loading Radius in Horizontal and Longitudinal 
Directions. 
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Underneath Dual-tire: Low 
Compressive Stress 
underneath Tire 

In the middle of Dual-Tire:
High Compressive Stress in 
the Middle of Tire

Stress Distribution of Dual-Tire Loading
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Stress Distribution of Wide-Base Tire 
Loading

 

Wide-Base Tire: Low 
Stress Concentration 
at the top of Subgrade 

Distribution of Wheel Load

Top of Subgrade

Approximate Level of Overlap of Stress Field

Pavement 
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• Dynamic FE Analysis: Bottom of the Wearing 
Surface
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Pavement Response Validation
• Dynamic FE Analysis: Bottom of the HMA
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Quasi-Static vs. Dynamic Analysis
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Summary
• VE FE modeling should be used to quantify tire damage to 

pavements:
– Continuous Loading Better Simulates Field Loading Conditions
– Surface Shear Should Be Considered
– Interface Stresses Should Be Appropriately Modeled 
– Dynamic Analysis Will Enhance The Model Prediction Capabilities

• Results of the developed FE models are in reasonable agreement 
with experimental measurements.

• Damage Comparison:
– Fatigue
– Primary Rutting
– Secondary Rutting
– Top Down Cracking

• Pavement damage of wide-base should be evaluated in the context 
of other benefits of pavements 
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Questions?


