

# Tecniche costruttive e controlli in itinere delle pavimentazioni stradali ed aeroportuali

Summer School SIIV Aeroporto di Olbia, 15 settembre 2006

Prof. M. Crispino, Politecnico di Milano

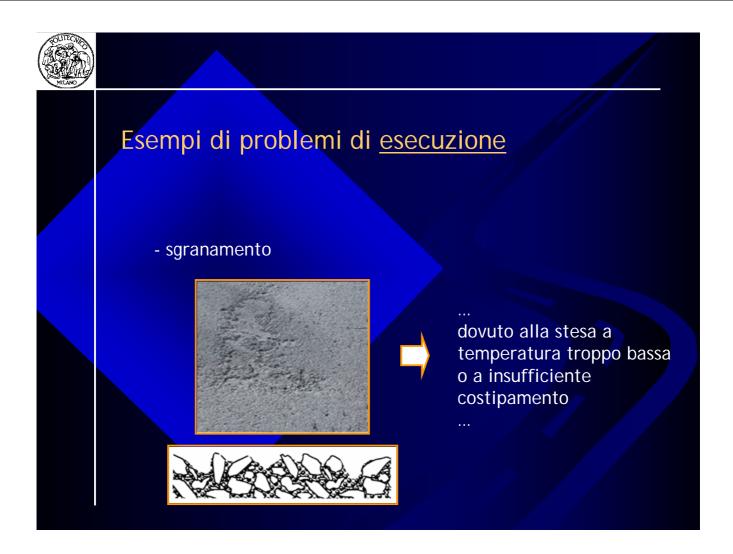


# Indice

- Tecniche costruttive delle pavimentazioni
  - Le criticità
  - Le conoscenze acquisite
  - La ricerca
  - II capitolato
- Controlli in itinere



# Le criticità del tema


# "stesa e compattazione"

 Scarsa importanza attribuita all'esecuzione rispetto ad altri fattori (materiali, progetto pavimentazione, etc.)



7





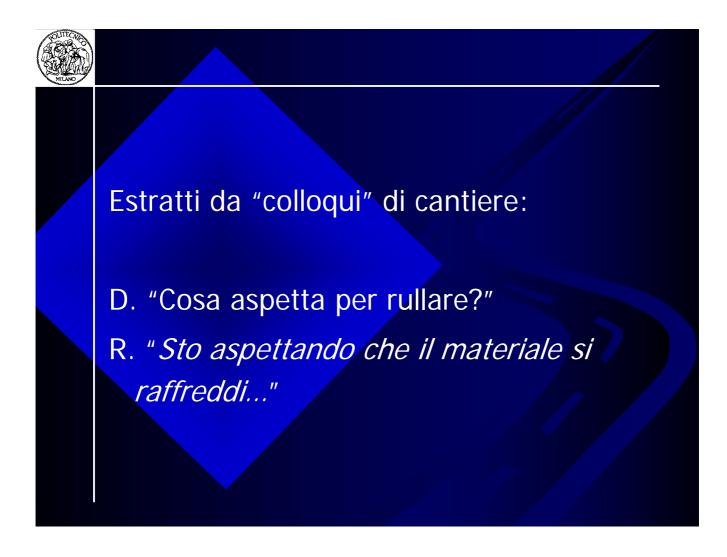











 Eccessiva delega all'operatore per scelte che sono di "progetto"

 Gli operatori spesso non sono FORMATI e ADDESTRATI









D. "Quanti passaggi effettuerà?"

R. "Mi regolo ...ad occhio, sa.. io ho esperienza...!"



D. "Perché sta usando la bassa frequenza?"

R. "Bip...!!!!...Bip !!!!!!!!...Bip...!!!!!"



### Le criticità del tema

# "stesa e compattazione"

 Le tecnologie disponibili sono avanzate ma necessitano di manutenzione

e di manutenzione se ne fa pochissima



#### ... forse non tutti sanno che...

La compattazione inizia con la STESA: una finitrice idonea ed in buono stato di manutenzione infatti è in grado di garantire almeno 1'80% della compattazione finale! tamper usato









E' fondamentale la corretta manutenzione di tutte le parti componenti delle macchine



 Nei casi migliori il Committente certifica i materiali, le cave e gli impianti. E le macchine??? Sono idonee ed in buono stato?



Perché parlare del tema

"stesa e compattazione"?

Perché i risultati della stesa e compattazione sono spesso

NCERTI e INSODDISFACENTI



# Perché parlare del tema

"stesa e compattazione"?

Perché la situazione attuale non è accettabile:

 la "qualità globale" non può prescindere da un'esecuzione affidabile





# Perché parlare del tema

"stesa e compattazione"?

 il ricorso all'utilizzo di materiali ad elevate prestazioni richiede tecniche di stesa e compattazione che non ne compromettano l'efficacia ma che al contrario garantiscano l'espletamento delle loro potenziali prestazioni



# Perché parlare del tema

"stesa e compattazione"?

 una stesa e una compattazione Inadeguati sono in grado di compromettere anche completamente le prestazioni della sovrastruttura ipotizzate in progetto, e quindi tutti i risultati della ricerca e degli studi preliminari su miscela e pavimentazione.





# La compattazione

- La compattazione dovrebbe articolarsi in tre fasi:
  - Compattazione iniziale
  - Compattazione principale
  - Compattazione finale



# La stesa e la compattazione

#### Obiettivi:

- Evitare di generare strappi trasversali sulla superficie della stesa di miscele particolarmente calde e soffici che tendono altrimenti a subire scorrimenti eccessivi
- Rendere la miscela più stabile prima della compattazione principale



Esempio: eseguire 2 passaggi > statici a velocità ridotta (3-4 km/h)



COMPATTAZIONE PRINCIPALE

# La stesa e la compattazione

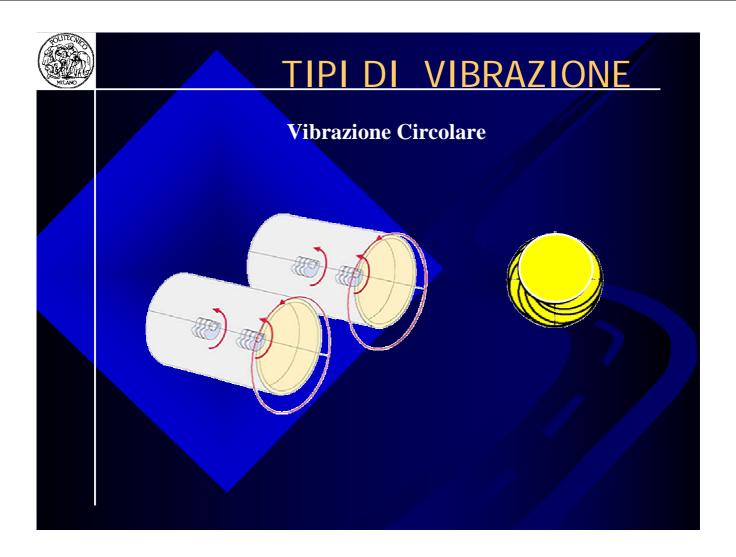
#### Obiettivo:

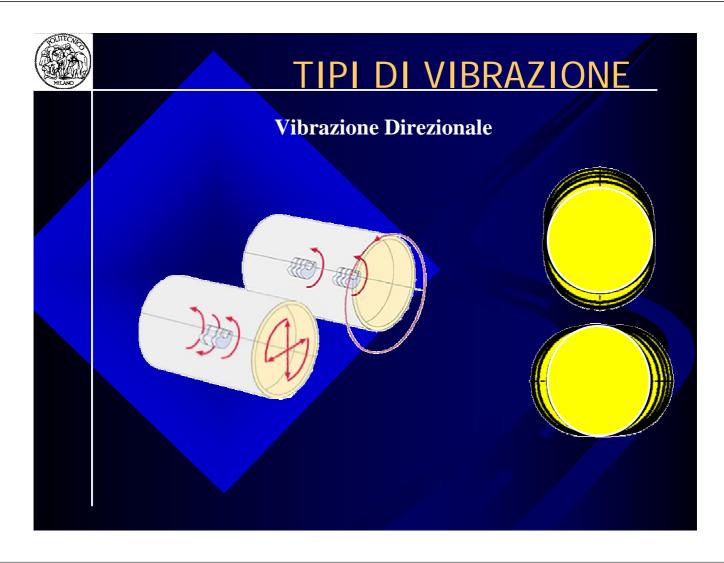
Conferire alla miscela il previsto grado di addensamento

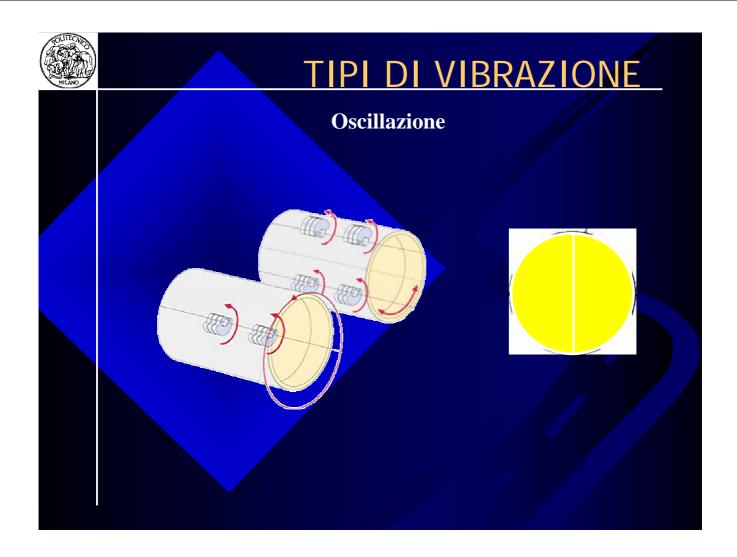


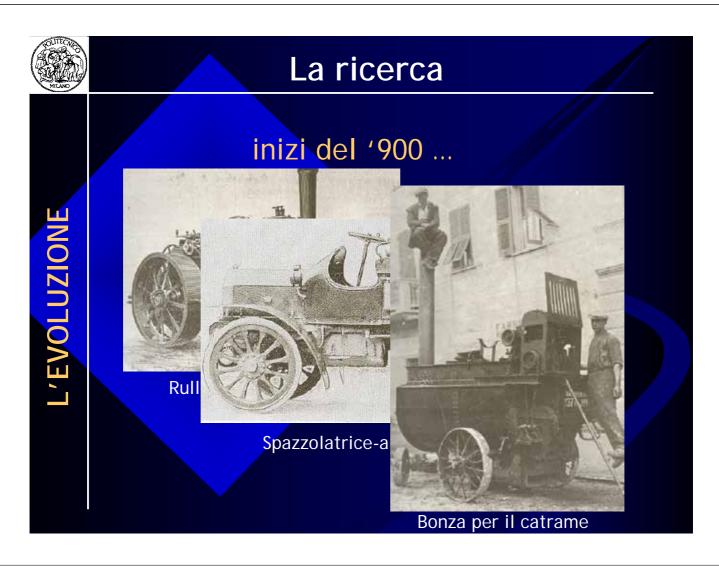
La compattazione principale rappresenta la fase fondamentale che deve essere preliminarmente definita (n° di passate, ampiezza vibrazione, frequenza vibrazione, etc.)




# La stesa e la compattazione


#### Obiettivi:


- Regolarizzare la superficie della stesa rimuovendo le tracce del passaggio del rullo principale
- Conferire alla pavimentazione le caratteristiche di tessitura superficiale desiderate




Esempio: eseguire 2 passaggi statici a velocità di 8 km/h











L'EVOLUZIONE

# La ricerca

... Oggi ...





Le ricerche in corso

Maggiore attenzione alle problematiche dell' <u>ambito urbano</u> (es. vibrazioni, ingombri, piccole aree di sosta, marciapiedi ecc.)



 Ottimizzazione delle tecniche esecutive per interventi che interessano sottoservizi



Analisi delle criticità che insorgono negli interventi che richiedono stese "a mano"





 Definizione di una correlazione tra operazioni di stesa e compattazione e caratteristiche superficiali ottenute a fine lavorazione



Individuazione delle tecniche più idonee per la lavorazione di materiali particolari (es. asfalti drenanti, basi ad alto modulo ecc.)



Identificazione delle maggiori criticità delle macchine e loro influenza sulla qualità della lavorazione





# Prospettive

Maggiore conoscenza dei fenomeni che intervengono nelle fasi esecutive



Scelta scrupolosa dei <u>mezzi</u> che possiedono i requisiti adatti per garantire il raggiungimento dei risultati voluti



Imposizione di <u>controlli</u> sulle componenti meccaniche dei mezzi d'opera e verifica del loro stato di manutenzione





Integrazione dei controlli prestazionali di cantiere con <u>nuove verifiche</u> sulle caratteristiche superficiali della pavimentazione ottenute a fine lavorazione, legando il risultato anche alla tecnica di stesa









# Prospettive

# L'EVOLUZIONE

Maggiore attenzione:

- alla salute ed alla sicurezza degli operatori
- all'ambiente



## La ricerca

La collaborazione tra Politecnico di Milano e International High Comp Center (IHCC - Sweden)

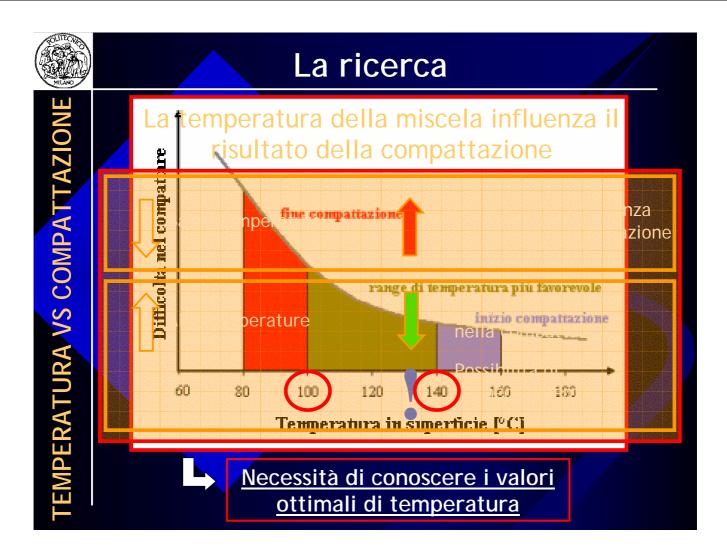
- Ottimizzazione delle tecniche di stesa del subballast ferroviario
- Influenza della temperatura sulla compattazione dei conglomerati bituminosi
- Influenza della compattazione sulla tessitura superficiale
  - L ....

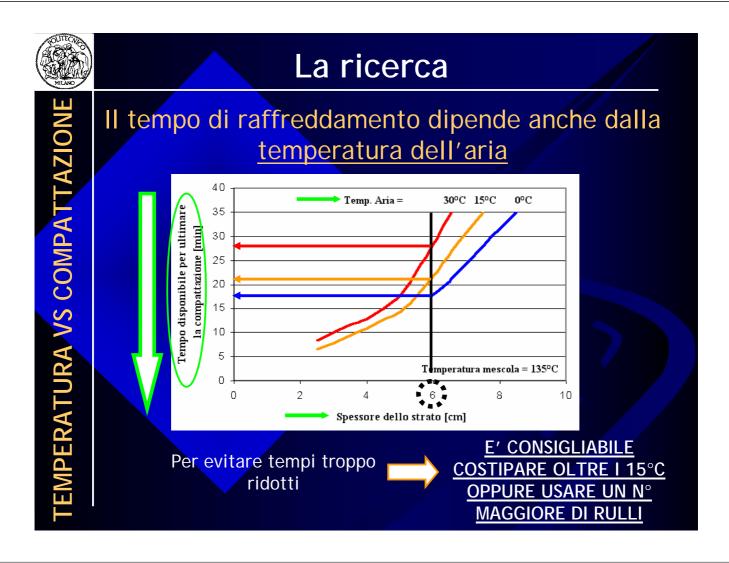




SUBBALLAST

# La ricerca


| risultati (Vuoti di capitolato: 3 ÷ 6%)

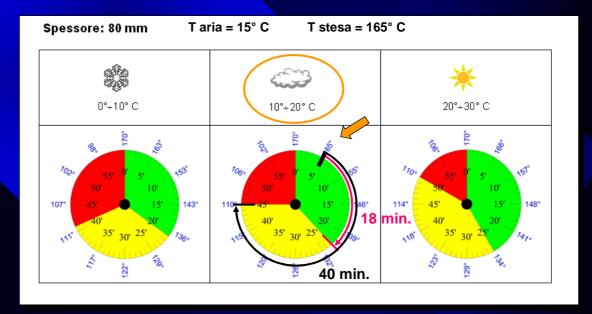

| AREA     | ROLLER                                    | N° PAS | SUB-<br>AREA | PASSEGES PER ROLLER                                               |                                                            | LAYER 'HICKNE SS CORES BITUI |      | VOIDS [%] | DENS.                                                 | MEDIUM DENSITY<br>PER SUB-AREA |       |      |      |       |     |  |
|----------|-------------------------------------------|--------|--------------|-------------------------------------------------------------------|------------------------------------------------------------|------------------------------|------|-----------|-------------------------------------------------------|--------------------------------|-------|------|------|-------|-----|--|
|          |                                           |        |              | 1 SV.COMB + 2 CV.COMB + 1 L.COMB                                  | 135                                                        | S 1.3                        | 4,17 | 7,26      | 2,312                                                 |                                |       |      |      |       |     |  |
|          | SOLO COMBINATO                            | 4      | S.A. 1.4     | 1 SV.COMB + 2 CV.COMB + 1 L.COMB                                  | 141                                                        | S 1.12                       | 4,51 | 6,49      | 2,32                                                  | 2,315                          |       |      |      |       |     |  |
|          |                                           |        |              | 1 SV.COMB + 2 CV.COMB + 1 L.COMB                                  | 147                                                        | S 1.6                        | 4,53 | 6,74      | 2,314                                                 |                                |       |      |      |       |     |  |
|          |                                           |        |              | 1 SV.COMB + 2 CV.COMB + 1 L.COMB + 2 L.TF(pesante)                | 128                                                        | S 1.1                        | 4,24 | 6,04      | 2,34                                                  |                                |       |      |      |       |     |  |
|          |                                           | 6      | S.A. 1.6     | 1 SV.COMB + 2 CV.COMB + 1 L.COMB + 2 L.TF(pesante)                | 130                                                        | S 1.7                        | 4,57 | 5,98      | 2,331                                                 | 2,337                          |       |      |      |       |     |  |
| 1        |                                           |        |              | 1 SV.COMB + 2 CV.COMB + 1 L.COMB + 2 L.TF(pesante)                | 135                                                        | S 1.10                       | 4,35 | 5,94      | 2,339                                                 |                                |       |      |      |       |     |  |
|          | COMPINATO - TUTTO                         |        |              | 1 SV.COMB + 2 CV.COMB + 1 L.COMB + 4 L.TF(pesante)                | 138                                                        | S 1.11                       | 3,91 | 6,02      | 2,351                                                 | 2,351                          |       |      |      |       |     |  |
|          | COMBINATO + TUTTO<br>FERRO (pesante)      | 8      | S.A. 1.8     | 1 SV.COMB + 2 CV.COMB + 1 L.COMB + 4 L.TF(pesante)                | 138                                                        | S 1.4                        | 4,46 | 4,84      | 2,363                                                 |                                |       |      |      |       |     |  |
|          |                                           |        |              | 1 SV.COMB + 2 CV.COMB + 1 L.COMB + 4 L.TF(pesante)                | 135                                                        | S 1.8                        | 4,29 | 6,03      | 2,339                                                 |                                |       |      |      |       |     |  |
|          |                                           |        |              | 2 SV.COMB + 4 CV.COMB + 2 L.COMB + 4 L.TF(pesante)                | 140                                                        | S 1.5                        | 4,84 | 4,07      | 2,37                                                  |                                |       |      |      |       |     |  |
|          |                                           | 12     | .A. 1.12     | 2 SV.COMB + 4 CV.COMB + 2 L.COMB + 4 L.TF(pesante) 145 S 1.9 4,76 |                                                            |                              |      |           | 2,379                                                 | 2,367                          |       |      |      |       |     |  |
|          |                                           |        |              | 2 SV.COMB + 4 CV.COMB + 2 L.COMB + 4 L.TF(pesante)                | 127                                                        | S 1.2                        | 4,27 | 5,52      | 2,352                                                 |                                |       |      |      |       |     |  |
|          | TUTTO-FERRO<br>(pesante)                  |        | S.A. 2.4     | SV.TF(pesante) + 1 CV.TF(pesante) + 1 L.TF(pesante) 150 S 2.6     |                                                            | S 2.6                        | 4,66 | 5,99      | 2,328                                                 |                                |       |      |      |       |     |  |
|          |                                           | 4      |              | 2 SV.TF(pesante) + 1 CV.TF(pesante) + 1 L.TF(pesante)             | 140                                                        | S 2.2                        | 4,32 | 6,47      | 2,327                                                 | 2,324                          |       |      |      |       |     |  |
| 2        |                                           |        |              | 2 SV.TF(pesante) + 1 CV.TF(pesante) + 1 L.TF(pesante)             | 140                                                        | S 2.4                        | 4,47 | 6,67      | 2,317                                                 |                                |       |      |      |       |     |  |
| 2        |                                           |        |              | 2 SV.TF(pesante) + 1 CV.TF(pesante) + 5 L.TF(pesante)             | 125                                                        | S 2.3                        | 4,48 | 4,81      | 2,363                                                 |                                |       |      |      |       |     |  |
|          |                                           | 8      | 6.A. 2.8     | 2 SV.TF(pesante) + 1 CV.TF(pesante) + 5 L.TF(pesante)             | 135                                                        | S 2.5                        | 4,45 | 5,43      | 2,349                                                 | 2,367                          |       |      |      |       |     |  |
|          |                                           |        | <u> </u>     | 2 SV.TF(pesante) + 1 CV.TF(pesante) + 5 L.TF(pesante)             | 129                                                        | S 2.1                        | 5,01 | 3,04      | 2,39                                                  |                                |       |      |      |       |     |  |
|          |                                           |        |              |                                                                   |                                                            |                              |      |           | 2 SV.TF(normale) + 1 CV.TF(normale) + 3 L.TF(normale) | 135                            | S 3.1 | 4,66 | 5,42 | 2,342 | 342 |  |
|          |                                           | 6      | S.A. 3.6     | 2 SV.TF(normale) + 1 CV.TF(normale) + 3 L.TF(normale)             | 131                                                        | S 3.3                        | 4,34 | 5,82      | 2,342                                                 | 2,342                          |       |      |      |       |     |  |
| 3        | TUTTO-FERRO<br>(normale)                  |        | L            | TF(normale) + 1 CV.TF(normale) + 3 L.TF(normale) 130 S 3.4 4      |                                                            | 4                            | 6,3  | 2,342     |                                                       |                                |       |      |      |       |     |  |
|          | (nonnaio)                                 | 40     | .A. 3.10     | 3 SV.TF(normale) + 2CV.TF(normale) + 5 L.TF(normale)              | 140                                                        | S 3.2                        | 4,31 | 4,69      | 2,372                                                 |                                |       |      |      |       |     |  |
|          |                                           | 10     | 3.A. 3.10    | 3 SV.TF(normale) + 2CV.TF(normale) + 5 L.TF(normale)              | 2CV.TF(normale) + 5 L.TF(normale) 150 S 3.5 4,75 4,25 2,36 |                              |      |           | 2,368                                                 | 2,37                           |       |      |      |       |     |  |
|          | 1                                         |        |              | 2 TG + 1 CV.TF(normale) + 1 L.TF(normale)                         |                                                            | S 4.2                        | 4,31 | 6,96      | 2,315                                                 |                                |       |      |      |       |     |  |
|          | TUTTO-GOMMA +<br>TUTTO-FERRO<br>(normale) | 4      | S.A. 4.4     | TG + 1 CV.TF(normale) + 1 L.TF(normale) 137 S 4.3 4,22 7,66       |                                                            |                              |      | 2,301     | 2,31                                                  |                                |       |      |      |       |     |  |
| 4        |                                           |        |              | 2 TG + 1 CV.TF(normale) + 1 L.TF(normale)                         | 135                                                        | S 4.1                        | 4,41 | 6,91      | 2,313                                                 |                                |       |      |      |       |     |  |
| (nomalo) |                                           | 8      | S.A. 4.8     | 4 TG + 2 CV.TF(normale) + 2 L.TF(normale)                         | 140                                                        | S 4.4                        | 4,19 | 6,15      | 2,339                                                 | 2,339                          |       |      |      |       |     |  |



# **SHANGHAI**










# "Guida pratica alla compattazione"

#### Schede Tecniche

suddivise per tipologia di materiale





# Temperatura di costipamento

- L'intervallo di temperature di costipamento corretto dipende dalle caratteristiche reologiche del legante.
- Sono dati che il progettista o l'impresa DEVONO conoscere.



#### Tessitura vs Compattazione





**SVEZIA** 



- Collaborazione con il Dynapac "International High Comp Center"
- Data sharing



Elaborazione Basi Dati

|                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000       | 11. |       |        |      | м    | #1    | /00   | J.M | 1.8  | 12.3  | k (  | b.i  | 5.        |      | ж    | ľМ  | 10   | MI.  | ıΙγ   | (2) | M)   | фи    |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-------|--------|------|------|-------|-------|-----|------|-------|------|------|-----------|------|------|-----|------|------|-------|-----|------|-------|--|
| 130            | Markey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Miller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arrestante |     | 36    | mil    | (ME) | 4    | m.    |       |     |      |       | ->   | iii  |           |      |      |     |      |      | 36    | -   |      |       |  |
| CA.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     | Mov   |        | 94.  | (be) | prix. |       |     | 944  |       |      | Jan. | Dep       | pan, | -    | ٠.  | . 54 | •    | 394   | Det | ***  |       |  |
| 13.            | and the latest and th | No. of the last of | CMMC.I     |     | 1     | _1     |      | ъ.   | -3.   | 8.X.I |     | ١    | ۸     | ж.   | -S.  | _1        | G    |      | u.  | А.   | л.,  | 1     | LΕ  | .34  | 13.5  |  |
| 1.6            | Storages, U.S. ASSET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | you, whomas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ber        | œ   | ,986  | 300    | 134  | 80)  | 18    | 9.81  | 133 | 6.84 | 6.30  | 96.7 | œ    |           | 338  | 1.91 | 55  | 杯.   | щ,   | E 3,5 | WE. | 5#3  | 533   |  |
| 18.            | Stores BY 17MG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | July nespende                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mgh.       | Œ4  | , MIC | .982   | 150. | 58)  | 56    | 9.83  | ш   | 1.54 | M. 31 | 81   | 1.72 | 548       | 55   | 19.  | 5.3 | 3E.  | 53   | EV.   | 758 |      | 3,3,3 |  |
| ŧ              | Brown SW (TAA)-2<br>Brown SW (TAA)-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Harried Transportation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Person.    | 阳   | 20    | 30     | 27   | M.   | î,    | W     | ü   | ij   | ij    | 50   | ä    | ili<br>Mr | Ħ    |      | ü   | W.   | 2    | 34    | W.  | K)   | ij,   |  |
| ŝ              | Down II ADY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bw.        | 81  | N.    | No. of | 32   | LE.  | 130   | 00    | Ò   | έij  | κ'n   | 60   | 120  | E.H       | ple  | 9    | ć.  | 46   | u, i | ÉØ    | 42  | 7.6  | ĖĖ    |  |
| Ť              | Enny BV 17445 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | said range shales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mr.        | Βi  | 190.3 | Ri     | Œ    | ĕ    | 10    | B     | 6   | H    | ñ     | E.   | 8    | 鹄         | i    | ä    | Ŕ   | 3    |      |       |     | iii) |       |  |
| Œ.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | m   | -     | -      |      |      |       | w     | 177 | Ľ    | 7.    |      |      |           |      | 91   | n   |      | 77   | 37    |     |      | ×     |  |
| 100            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -   |       |        |      |      |       |       |     |      |       |      |      |           |      |      |     |      |      |       |     |      |       |  |
| DESCRIPTION OF | Captal box, come                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AND NEEDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ecentra l  |     |       |        |      |      |       |       |     |      |       |      |      |           |      |      |     |      |      |       |     |      |       |  |
| 20             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |     |       |        |      |      |       |       |     |      |       |      |      |           |      |      |     |      |      |       |     |      |       |  |





#### Introduzione di una nuova variabile:

#### Carico Statico Totale Transitato (Total Static Load)

$$TSL = \sum_{i=1}^{n} \left( SLL_{i}^{f} + SLL_{i}^{r} \right)$$

TSL

= Total Static Load

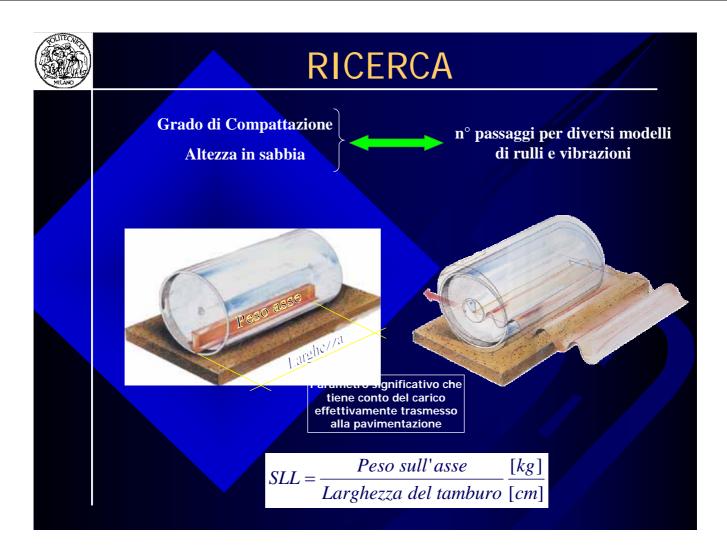
n

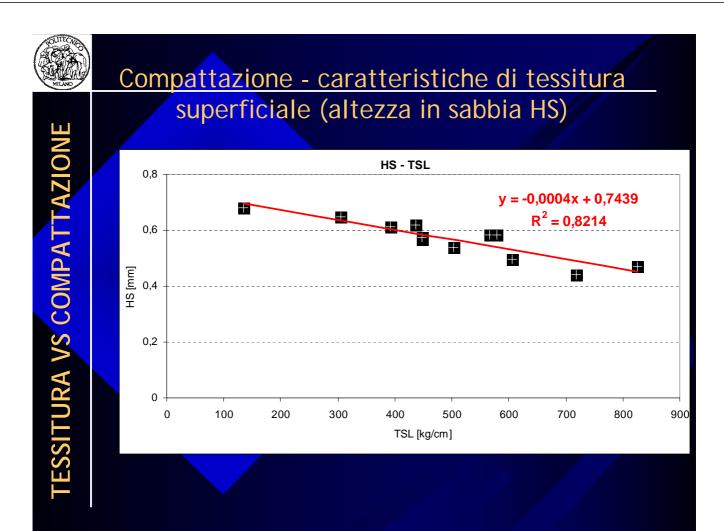
= number of passes;

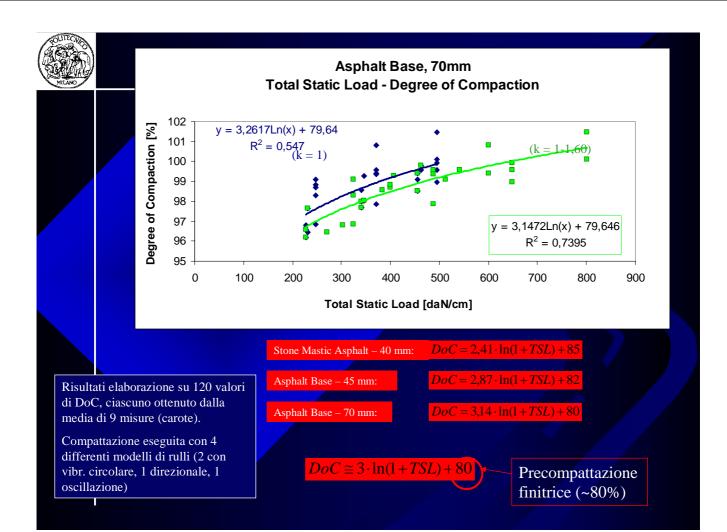
SLLf

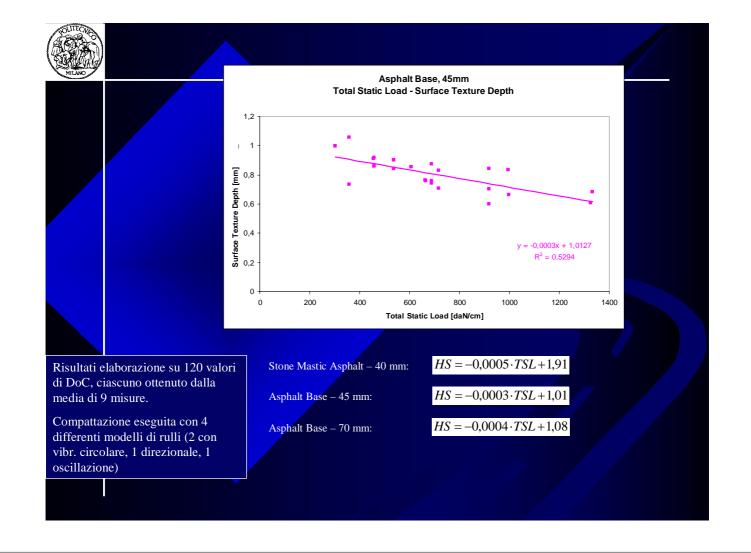
= Static Linear Load (front drum);

= Static Linear Load (rear drum).

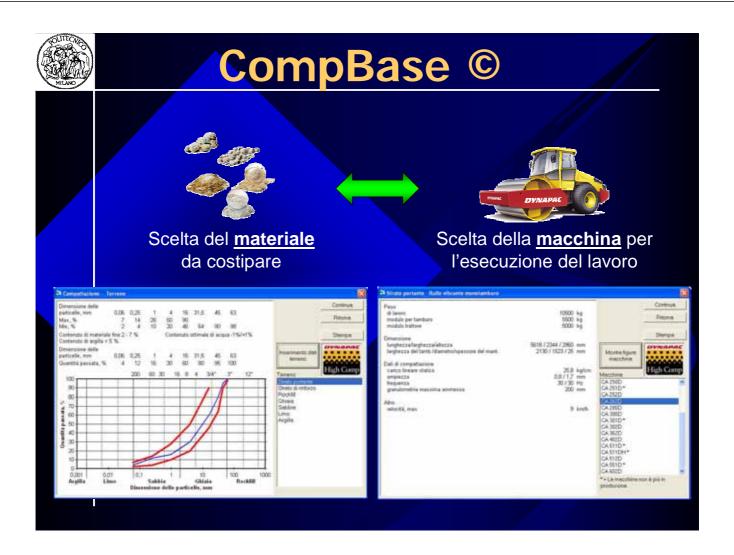

Somma dei carichi statici effettivamente trasmessi alla pavimentazione


#### Forma Generale con Vibrazione


$$TSL = \sum_{i=1}^{n} \left( k_i^f \cdot SLL_i^f + k_i^r \cdot SLL_i^r \right)$$

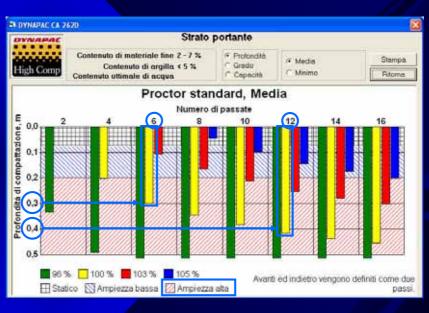

Somma dei carichi effettivamente trasmessi alla pavimentazione considerando l'effetto dinamico della vibrazione

ki = vibratory coefficient for the *i*-esime pass (k=1 in case of a static pass).











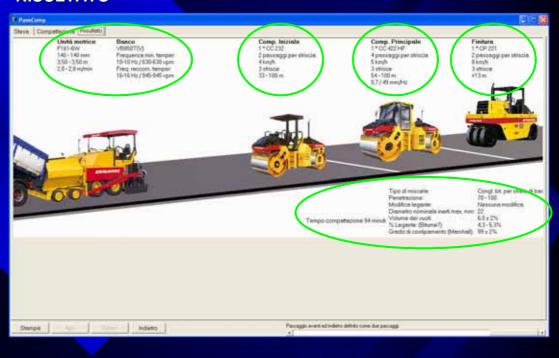




# CompBase ©



- Determinazione del <u>numero di passaggi</u> e delle impostazioni di <u>vibrazione</u> del mezzo costipante
- Verifica preliminare del grado di costipamento

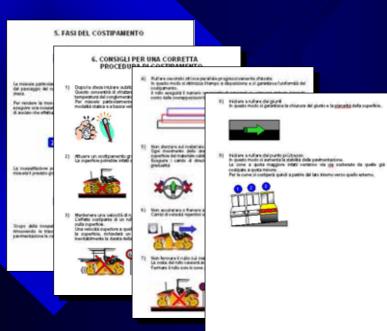





# PaveComp ©





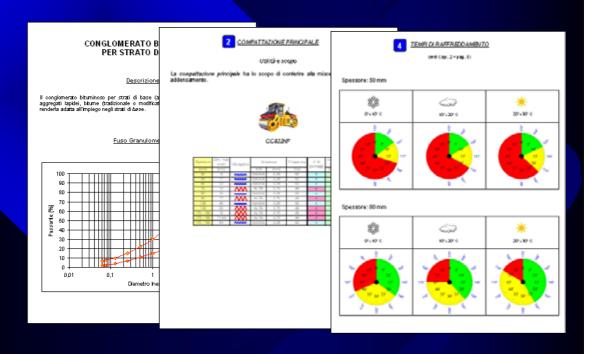





# La "Guida pratica alla

# compattazione" Regole Generali

per la corretta esecuzione delle procedure di costipamento






# "Guida pratica alla compattazione"

#### Schede Tecniche

suddivise per tipologia di materiale





# "Guida pratica alla compattazione"

#### Schede Tecniche

suddivise per tipologia di materiale



#### CC422HF

| Spessore  | Dim . m ax<br>inerti | Vibrazione              | Amp      | iezza | Frequenza | n" di    | Velocità<br>max. | Produttività        |  |
|-----------|----------------------|-------------------------|----------|-------|-----------|----------|------------------|---------------------|--|
| [mm]      | [mm]                 |                         | A/B [mm] |       | [Hz]      | passaggi | [km/h]           | [m <sup>2</sup> /h] |  |
| 50        | 12                   | ~~~                     | BASSA    | 0,28  | 62        | 4        | 5                | 1260                |  |
| 50        | 17                   | ~~~                     | BASSA    | 0,28  | 62        | 4        | 5                | 1260                |  |
| 60        | 23                   | ~~~                     | BASSA    | 0,28  | 62        | 4        | 5                | 1260                |  |
| 70        | 12                   | $\Lambda\Lambda\Lambda$ | ΔΙΤΔ     | 0.70  | 49        | 4        | - 5              | 1260                |  |
| 80        | 33                   | ***                     | BASSA    | 0,28  | 62        | 4        | 5                | 1260                |  |
| 90        | 17                   | \<br>\<br>\             | ALTA     | 0,70  | 49        | 4        | 5                | 1260                |  |
| 120       | 46                   | ***                     | BASSA    | 0,28  | 62        | 4        | 5                | 1260                |  |
| 130       | 23                   | <b>&gt;&gt;</b>         | ALTA     | 0,70  | 49        | 4        | 5                | 1260                |  |
| 175 - 190 | 12                   | >                       | ALTA     | 0,70  | 49        | 4        | 4                | 1008                |  |
| 175 - 190 | 17-46                | ^                       | ALTA     | 0,70  | 49        | 4        | 5                | 1260                |  |
| 175 - 190 | 64                   | ~~~                     | BASSA    | 0,28  | 62        | 4        | 5                | 1260                |  |

Conglomerato bituminoso per strato di base



# Le macchine ed il capitolato

Una frase tipica dei capitolati è la seguente:

Per lo strato di usura deve essere utilizzato un rullo tandem a ruote metalliche del peso massimo di 15t.

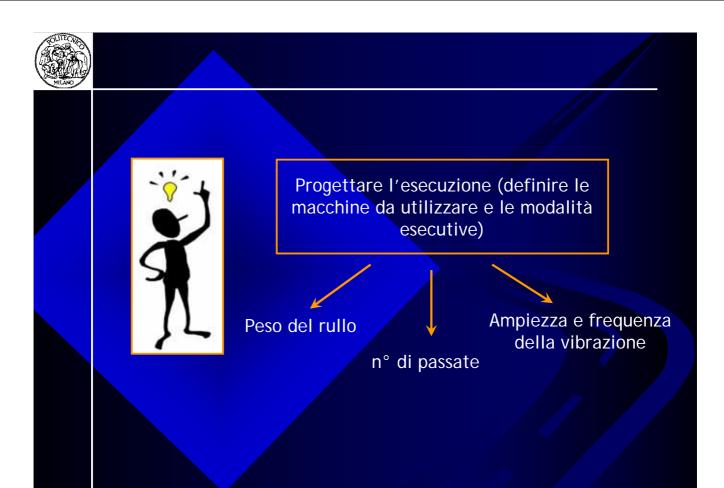


La specifica è "troppo" dettagliata se il capitolato è <u>prestazionale</u>




La specifica è insufficiente se il capitolato è prescrizionale






## La domanda...

In un rapporto contrattuale di tipo prestazionale, il committente ha il diritto/dovere di controllare la tipologia e la qualità delle macchine di stesa e compattazione?









# Tipi di controllo in itinere

- In sito:
  - Temperature (alla finitrice e FINO ALLA ULTIMAZIONE DELLA COMPATTAZIONE)
  - Spessori (Pre e post compattazione)
  - Densità (strumenti affidabili?)
  - Portanza
- In laboratorio (prove "classiche"):
  - Composizione e volumetria (% di legante, Granulometria, vuoti, densità)
  - Caratteristiche dei materiali di base (leg. bituminoso ed inerti)
  - Caratteristiche prestazionali della miscela



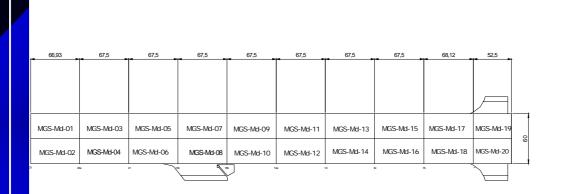
#### PROVE

|                                                                                                    | Prelievi in sito                       | Prove in laboratorio                                                                                 |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Prove in sito                                                                                      | Sottofondo                             | Classificazione HRB<br>Prova CBR<br>Equivalente in sabbia                                            |  |  |  |  |  |
| Prova di carico su piastra                                                                         | Sottofondo bonificato                  | Classificazione HRB<br>Prova CBR                                                                     |  |  |  |  |  |
| Prova di densità e umidità  Misura di spandimento per la mano                                      | Misto granulare<br>stabilizzato        | Equivalente in sabbia<br>Classificazione HRB<br>Equivalente in sabbia                                |  |  |  |  |  |
| d'attacco Misura spessori                                                                          | Misto cementato                        | Analisi granulometrica<br>Resistenza a compressione su provini CBR<br>Perdita in peso Los Angeles    |  |  |  |  |  |
| Controllo modalità di costipamento                                                                 |                                        | Equivalente in sabbia<br>Analisi granumetrica degli inerti<br>Stabilità Marshall                     |  |  |  |  |  |
| Misura temperature di stesa  Misura delle caratteristiche superficiali (Skid Test) - Microrugosità | Conglomerato bituminoso (da finitrice) | Scorrimento Marshall<br>Rigidità Marshall<br>Peso di volume dei campioni Marshall<br>Calcolo % vuoti |  |  |  |  |  |
| Prova altezza in sabbia - Macrorugosità                                                            |                                        | Calcolo % bitume                                                                                     |  |  |  |  |  |
| Rilievo profilometrico                                                                             | Bitume                                 | Prova Brasiliana di trazione indiretta<br>Penetrazione a 25 °C<br>Palla-Anello                       |  |  |  |  |  |
| Prova deflettometrica HWD                                                                          | (da impianto)  Inerti (da impianto)    | Rottura Frass<br>Los Angeles                                                                         |  |  |  |  |  |
|                                                                                                    | Carotaggi                              | % Bitume riferita agli inerti<br>% Vuoti residui<br>Misura spessori                                  |  |  |  |  |  |



# Alcuni riferimenti per le prove

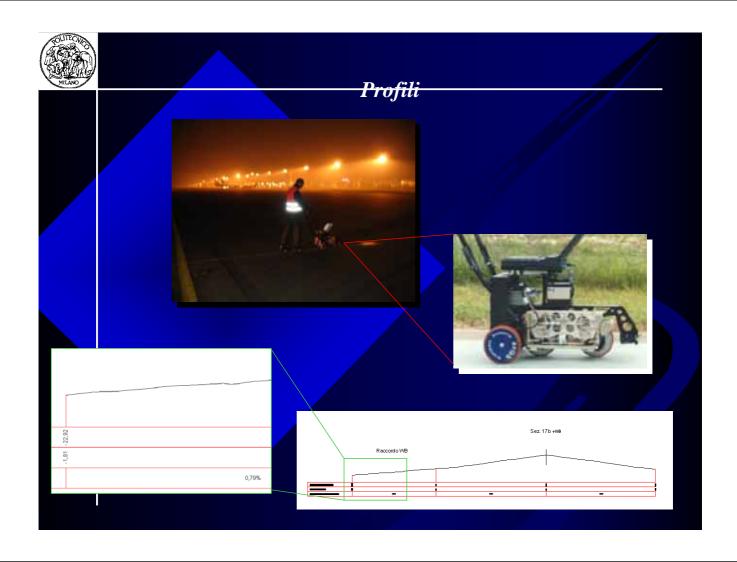
- Aree di riferimento su cui eseguire prelievi (qualche migliaio di mq...)
- Carotaggi: almeno due carote vicine
- Per prelievi: doppia campionatura di cui una di scorta (almeno 15 kg a prelievo)

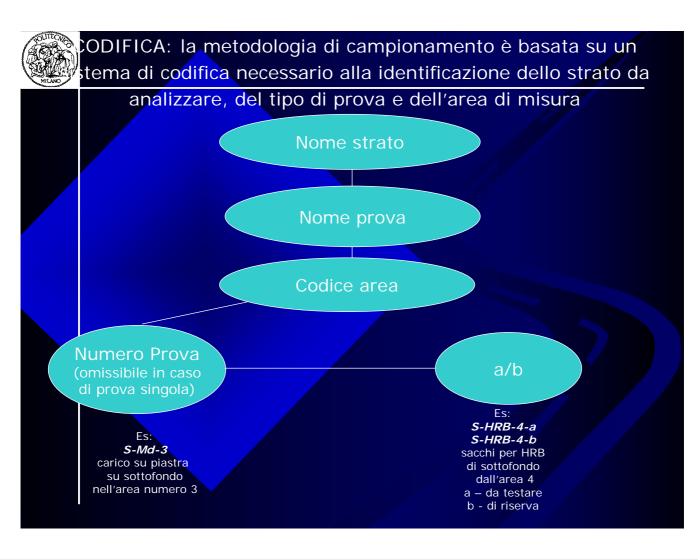



## Suddivisione delle aree di prova in base allo strato

| Strato della<br>pavimentazione   | Frequenza di prova |
|----------------------------------|--------------------|
| Sottofondo                       | 1prova/1500mq      |
| Fondazione in misto<br>granulare | 1prova/2000mq      |
| Fondazione in misto cementato    | 1prova/2000mq      |
| Conglomerati bituminosi          | 1prova/2500mq      |




# ESEMPIO DI RETICOLO DI RIFERIMENTO




Misto granulare stabilizzato

Prova di carico su piastra: determinazione Md

Frequenza: 1 prova ogni 2025 mq







# I controlli: punti aperti

- Confronto tra grandezze misurate e grandezze di progetto
- Significatività delle misure e procedure di elaborazione



# Conclusioni

Nell'esecuzione dei lavori di stesa e compattazione non deve esserci empirismo perché l'efficacia della stesa e della compattazione del conglomerato bituminoso risponde a fenomeni fisici:

- -Viscosità
- Temperatura
- Pesi
- Frequenze
- etc.
- Le scelte inerenti la stesa e la compattazione non devono essere demandate all'operatore della finitrice e/o del rullo.
- La stesa e la compattazione si progettano:
  - Distanza dal cantiere
  - Tempi di raffreddamento
  - Carico Statico Lineare
  - Ampiezza e Frequenza di Vibrazione
  - etc.



### Conclusioni



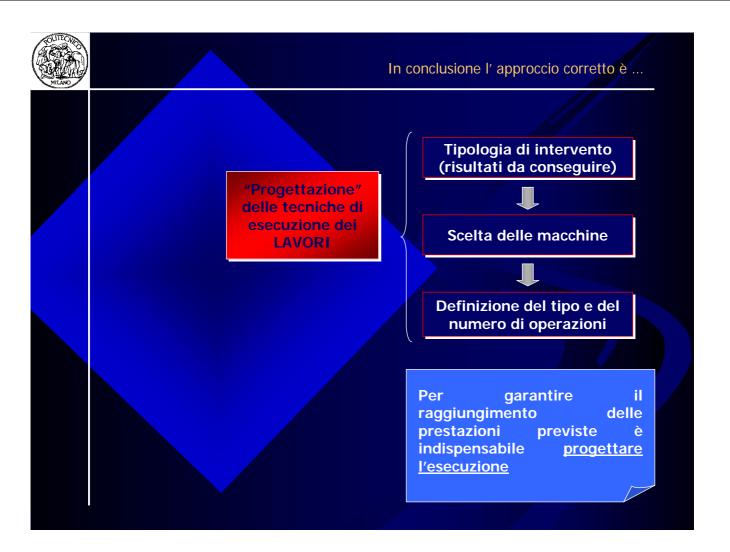
La macchine devono essere manutenute



p.e. una finitrice non idonea darà luogo a problemi che il rullo non può recuperare



La qualità dei lavori non può e non deve prescindere dalla scelta di idonee tecniche costruttive




La qualità dei materiali (non sempre eccellente ...) non è sufficiente a garantire la corretta riuscita dei lavori



#### Qualcosa sta cambiando ...

- I controlli saranno sempre più mirati e da ciò conseguirà la necessità di adoperare tecniche di stesa specifiche (abbandonare il concetto che tutto va bene per tutto).
- I "piccoli" lavori (es.: sottoservizi) in ambito urbano sono sotto la lente del microscopio. Le amministrazioni adotteranno criteri di controllo sempre più rigorosi. Valorizzare i compattatori leggeri.
- L'efficienza delle macchine sarà oggetto di controlli: spendere in manutenzione.
- Diffondere le conoscenze tecniche perché le Imprese diventino sempre più consapevoli del ruolo delle macchine ai fini della qualità finale dell'opera.
- Cosa fare per le tecnologie innovative (rigenerazione a freddo, conglomerati con fibre, etc.)



