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ABSTRACT 
More than 75 percent of accidents with casualties and fatalities in Italy occur in urban 
areas, and more than half of them occur on intersections (826 fatalities and 123.000 
injured persons in 2004). Moreover, accidents with only material damage that occur at 
intersections also cause significant disturbance and delays to traffic flow. Therefore, it 
is important for highway engineers to know the relationship between accidents and the 
characteristics of the intersections (traffic data, geometry, regulation) in order to 
intervene effectively in reducing accidents. For this reason many accident prediction 
models for urban intersections have been developed and are currently used in many 
countries. Obviously, the availability of these models can lead to their application in the 
Italian context. However, the application of these models in a geographic area different 
from that in which they were developed presents significant problems of transferability 
because they are based on data (accidents, geometry, regulation, traffic, vehicle 
characteristics, driver population, etc..) that represent the specific conditions of the 
original geographic area. Consequently the use of these models in different areas could 
result in unreliable accident estimations. The transferability of some accident prediction 
models for urban intersections to a typical Italian context was evaluated using accident 
and traffic data of intersections in the Trieste urban area. Several GOF statistics were 
used to assess the performance of the models. The results show a poor transferability of 
the models tested to the urban intersections of Trieste.  
 
Keywords: accident prediction models, urban intersections, transferability 



Marchionna A. – Perco P. – Tavernar M.C. 

 2

INTRODUCTION 
In order to manage the road safety of urban intersections, highway engineers need to 
have a good insight into the variables that explain accident occurrence. Accident 
prediction models (APMs) are useful tools for this task because they relate the annual 
accident experience of an intersection to its characteristics (geometry, regulation, traffic 
volume etc.). They can be used, therefore,  to compare the actual accident experience of 
a specific intersection with the expected safety performance of similar intersections. 
However, an accident prediction model is calibrated using accident data of a sample of 
intersections representative of a specific geographic area. Therefore, the transferability 
of the model to other geographic areas requires special attention. In fact, accident 
frequencies vary across time and space, even between roads that are similar, because of 
differences in factors such as accident reporting thresholds, accident reporting practices, 
driver population, law enforcement, animal populations, vehicle characteristics, and 
climate. Consequently, an accident prediction model cannot be used for sites not 
included in the geographic area for which it was developed without a transferability 
evaluation. This problem is well known and has been the object of several studies 
(Persaud B. et al. 2002; Washington S. et al, 2005). To tackle this problem, Harwood et 
al. (Harwood et. al., 2000) outlined a procedure to recalibrating “base” accident 
prediction models to suit the safety conditions present in the states of the United States 
for which accident data were not used to develop the “base” models. This calibration 
procedure involves the estimation of a calibration factor appropriate for a particular 
State that is used to multiply the prediction of the “base” model. Moreover, a second 
procedure based on the Empirical Bayes approach makes it possible to combine the 
results of the “base” accident prediction model with accident history data of a specific 
site. However, to use these calibration procedures is not easy: this task requires an 
expertise in highway safety analysis procedures, a good knowledge of accident 
prediction models and the availability of appropriate data. Considering that 75.7% of 
traffic accidents in Italy occur on urban roads (169,893 accidents) and more than 52% 
of these accidents occur at urban intersections (826 fatalities and 122.592 injured – 
ISTAT, 2005), the objective of this study was to evaluate if accident prediction models 
for urban intersections developed in foreign countries or in a particular Italian region, 
can be used in other Italian regions without a recalibration procedure. 

ACCIDENT PREDICTION MODELS EVALUATED 
Currently there are several accident prediction models for urban intersections developed 
in different countries (Reurings et al., 2005). From all the existing models, the following 
models were considered to evaluate their transferability to intersections in the urban 
area of Trieste: 
 Bauer and Harwood model (Bauer and Harwood, 2000), United States; 
 Canale et al. model (Canale et al., 2005), Italy; 
 Summergill et al. model (Summergill et al., 2001), United Kingdom; 
 Greibe model (Greibe 2003), Denmark. 

Each of these four models were selected for a specific reason: the Bauer and Harwood  
model was selected because it is a particularly complete model that considers many 
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geometric characteristics of the intersection as independent variables; the Canale et al. 
model because it was developed in an Italian city; the model Summergill et al. model 
because it is based specifically  on data from  intersections with one or more one-way 
arms and one-way roads are common in Italian cities, but little is known about how 
numbers of accidents and their distribution differ from those on two-way roads; finally, 
the Greibe model was selected because it is a “basic” model that considers only the 
traffic flow as independent variable and was developed in another European country 
with right hand driving. 

Bauer and Harwood used data from a database provided by the California 
Department of Transportation. The data included all collision types (i.e., both multiple- 
and single-vehicle accidents) using 3-year accident frequencies (1990 to 1992) and 
geometric design, traffic control, and traffic volume data. The set of models developed 
predict the total accident frequency and the injury accident frequency for the following 
urban intersection types: 
 four-leg, stop -controlled intersections 
 three-leg, stop -controlled intersections 
 four-leg, signalized intersections 

The authors used two general types of statistical models: a lognormal regression model 
for four-leg intersections (both stop-controlled and signalized) and a loglinear 
regression model for three-leg, stop-controlled intersections. In the case of lognormal 
regression the logarithm of the number of accidents is supposed to be normally 
distributed and the coefficients are estimated by the least-square method. In the case of 
loglinear regression the number of accidents is supposed to follow a Poisson or a 
negative binomial distribution and the coefficients are estimated by the maximum 
likelihood method. Models of both types are in the form: 

)exp(.....)exp()()()exp( 330
21

iqqicrossroadroadmajori XXADTADT βββμ ββ ⋅⋅⋅⋅⋅= −
 

where μi is the expected number of accidents at the ith intersection in a 3-year period, Xij 
are the predictor variables and βk are the coefficients to be estimated, shown in table 1. 
The model uses the natural logarithm of the major-road and crossroad average daily 
traffic (ADT) as variables. 

Canale et. al used data from 400 intersections in the urban area of Catania. The data 
included accidents in a 3-year period, traffic volume, geometric characteristics and 
traffic control. The set of models developed predict the injury accident frequency in a 3-
year period for the following intersection types: 
 three-leg, no control intersections 
 three–leg, stop - controlled intersections  
 four-leg, no control intersections  
 four–leg, stop - controlled intersections 
 four–leg, signalized intersections. 

The authors tested both the types of statistical models: lognormal regression model and 
loglinear regression model (Poisson regression). However, for all the intersection types 
the statistical analysis revealed that the loglinear regression model was more 
appropriate. The model form is the same as Bauer and Harwood’s, the coefficients β are 
shown in table 2. 
 



Marchionna A. – Perco P. – Tavernar M.C. 

 4

Table 1 – Accident Prediction models (Bauer and Harwood, 2000) 

Variable Variable level Coefficients β 
Four-leg stop Three-leg stop Four-leg signalized 

  Total  Injury Total  Injury Total  Injury  
Intercept  -4.664 -4.693 -5.557 -6.618 -3.428 -5.745 
Major road ADT 
(log)  0.620 0.584 0.683 0.696 0.503 0.574 

Crossroad ADT 
(log)  0.281 0.206 0.245 0.238 0.224 0.215 

Major road  
Left turn 

Prohibited -0.941 -0.747 -0.402 -0.393 - - 
permitted 0.000 0.000 0.000 0.000 - - 

Major road  
Left-turn 
channelization 

No left-turn lane - - 0.019 -0.057 - - 
Painted left-turn 
lane - - 0.000 0.000 - - 

Curbed left-turn 
lane - - 0.210 0.209 - - 

Major road   
Right turn 
channelization 

No free right 
turns - - - - -0.115 - 

Provision for 
free right turns - - - - 0.000 - 

Major road  
Lane width  -0.097 -0.081 -0.037 -0.048 -0.053 - 

Major road outside 
shoulder width  - -0.020 - - - - 

Major road 
Number of lanes 

3 or less 0.401 0.282 - - -0.225 -0.163 
4 or 5 0.120 0.049 - - -0.130 -0.151 
6 or more 0.000 0.000 - - 0.000 0.000 

Major road 
Presence of  
median  

Divided - - -0.174 -0.182 - - 

Undivided - - 0.000 0.000 - - 
Major road  
Access control 

None -0.437 -0.382 - - -0.310 -0.290 
Partial 0.000 0.000 - - 0.000 0.000 

Major road 
Functional class 

Principal arterial 0.000 0.000 - - - - 
Minor arterial -0.153 -0.079 - - - - 
Major collector -0.229 -0.401 - - - - 

Design speed of 
major road  - - -0.006 - - 0.005 

Crossroad  
Right turn 
channelization 

No free right 
turns -0.384 -0.300 -0.559 -0.581 - - 

Provision for 
free right turns 0.000 0.000 0.000 0.000 - - 

Crossroad  
Number of lanes 

3 or less - - - - -0.130 -0.155 
4 or more - - - - 0.000 0.000 

Lightning No -0.160 - - 0.094 - - 
Yes 0.000 - - 0.000 - - 

Signal timing 
Pretimed - - - - 0.063 -0.051 
Semi-actuated - - - - 0.000 0.000 
Fully actuated - - - - 0.622 0.400 

Signal phasing Two-phase - - - - 0.000 0.000 
Multiphase - - - - -0.200 -0.240 
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Table 2 – Accident Prediction models (Canale et al., 2005) 

Variable Variable level Coefficients β 
3 leg 4 leg 

  no control stop no control stop signalized 
Intercept  -7.396 -14.558 -5.515 -5.398 -5.630 
Major road ADT   0.731 0.810 0.251 0.275 - 
Crossroad ADT  - 0.405 0.244 0.445 1.038 
Major road 
Left turn 

Prohibited 0.000 - - 0.000 - 
Permitted 0.422 - - 0.819 - 

Major road 
Right turn 

Prohibited - - - 0.000 0.000 
Permitted - - - 0.886 1.147 

Major road 
Right turn 

Protected - - - - 0.737 
Not Protected - - - - 0.000 

Major road 
Side-walk width  - 0.445 - - -0.237 

Major road 
Presence of median 

Absent - 1.207 - - - 
Present - 0.000 - - - 

Major road  
Operation 

One way 0.000 - 0.000 - 0.000 
Two way 0.703 - 0.403 - 1.893 

Major road  
Percent grade  

Steep grade -0.745 - - -0.673 0.000 
Level -0.029 - - -0.232 -0.529 
Moderate grade 0.000 - - 0.000 0.000 

Crossroad 
left turn 

Prohibited - - - 0.000 0.000 
Permitted - - - -0.469 -0.984 

Crossroads 
left turn 

Protected - - - - -1.470 
Not Protected - - - - 0.000 

Crossroad 
right turn 

Prohibited - - - 0.000 0.000 
Permitted - - - -0.605 0.342 

Crossroads 
right turn 

Protected - - - - 2.061 
Not Protected - - - - 0.000 

Crossroad 
lane width  - 0.339 0.317 0.179 -0.293 

Crossroad  
Side-walk width  - - 0.256 - - 

Crossroad  
Number of lanes   - - - - -0.515 

Crossroad 
Operation 

One way - 0.000 0.000 - - 
Two way - 0.826 -0.523 - - 

Crossroad  
Percent grade 

Steep grade 1.172 0.152 0.478 -0.604 - 
Level 0.302 -1.253 0.549 -0.153 - 
Moderate grade 0.000 0.000 0.000 0.000 - 

Road markings Present 0.000 0.000 - - - 
Absent -0.707 0.558 - - - 

Signal phasing Two-phase - - - - -1.669 
Multiphase - - - - 0.000 

 
The particularity of the set of models developed by Summergill et al. is that it is 

based on data from intersections with one or more one-way legs. The models are based 
on the data of injury accidents collected on 433 urban intersections of the following 
types: 
 three-leg, priority intersection 
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 three-leg, signalised intersection 
 four-leg, priority intersection 
 four-leg, signalised intersection. 

Records of 3,622 personal injury accidents occurring at the junctions were obtained for 
the period 1987-1994 inclusive. Since the number of accidents in a given period does 
not follow a normal distribution, the technique of generalised linear modelling was used 
to develop accident prediction models from the data. Different model forms were 
developed also considering traffic flow functions, accident types, and geometric factors. 
This study evaluated only the basic models that estimate the accident frequency at the 
intersection in function of the total traffic inflow. The form of the basic model is 

αkQA =  
where A is the expected number of injury accidents per year, Q is the total traffic inflow 
in thousands of vehicles in a 24-hour period, k and α are the parameters to be estimated 
shown in table 3.   

Table 3 – Accident Prediction models (Summergill et al., 2001) 
Type 3-leg  priority  4-leg priority  3-leg signal  4-leg signal  
α 0.865 0.430 0.432 0.794 
k 0.058 0.270 0.237 0.257 
 
Greibe used data on traffic flow and the geometric characteristics of 1036 urban 

intersections of the following types: 
 three-leg, signalised intersection 
 three-leg, non-signalised intersection 
 four-leg, signalised intersection 
 four-leg, non-signalised intersection. 

The accident data included 2534 personal injury and damage only accidents in the 
period 1987-1991. The traffic flow was considered to be a continuous variable, while all 
the other variables were converted into class variables. Generalised linear modelling 
was used to fit the models to the data. The distribution of accidents was supposed to 
follow a Poisson distribution. The model form is: 

∑ ⋅⋅⋅⋅= ijj
pp

prii xNNa βμ exp2
sec

1  

where μi is the expected number of accidents at the ith intersection per year, Npri is the 
incoming traffic flow (ADT) from the primary direction, Nsec is the incoming traffic 
flow (ADT) from the secondary direction, xij the variables describing road geometry or 
environment of the intersection and α, p, βj  are the parameters to be estimated. The 
statistical analysis showed that the variables describing road geometry do not increase 
significantly the percentage explained, therefore the models developed, shown in table 
4, use only traffic flows as independent variable. 

Table 4 – Accident Prediction models (Greibe, 2003) 
Type 3 leg not signalized 3 leg signalized 4 leg not signalized 4 leg signalized 
α 1.04E-05 1.34E-05 7.12E-04 1.08E-04 
p1 0.69 0,88 0.30 0.53 
p2 0.60 0.33 0.55 0.52 
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DATA SOURCES 
In order to evaluate the transferability of these models, detailed information on 

accident data, traffic flow and the road layout of urban intersections was required. 
Therefore this study collected these data for intersections in the urban area of Trieste - a 
city in the north-east of Italy (population 250,000),. 

Crash data 
The accident statistics database covering all local police recorded accidents in a 12 year 
accident period (1990–2001) was available. The database contains more than 38,500 
accidents that occurred both on intersections and along streets. 17,445 of them occurred 
at intersections, causing 36 fatalities and 9,332 injured persons. The data included 
location, date, time, death, injured, number and type of vehicles involved and 
pedestrians. All accidents were related to the specific localization using the street 
names. The intersections were localized with the names of the crossing streets. The data 
about the nature of accident and the violated road code rules are incomplete and so they 
are not usable for the purposes of this study. The database included injury accidents and 
damage only accidents. However, it should be noted that all the injury accidents that 
occurred were present in the database since the police always intervene in them, while 
in the case of damage only accidents there are accidents not recorded since the police 
did not intervene. This element must be considered when the transferability of accident 
prediction models for all accidents is evaluated.  

Traffic data 
The traffic data used for this study are based on the report (Rilievi di Traffico, 2002) 

developed by the Department of Civil and Environmental Engineering of Trieste 
University that contains the results of an extensive traffic survey campaign 
commissioned by the Trieste county council to develop the new Traffic Urban Plan. 
This report contains the traffic volume for the peak hour (7.30-8.30 a.m.) of all the 
streets in the Trieste urban area, except for minor streets that do not present transit 
traffic flow but only residential and parking traffic. To calculate the average daily traffic 
(ADT) starting from the peak hour traffic, the coefficient 0.129 calculated on the basis 
of the traffic data collected was used. It should be noted that many streets are 
characterized by one-way traffic reserved for public transport and services. In these 
cases the traffic flow was not available in the report, therefore the estimation of the 
ADT was made considering the timetables of all the bus routes, integrated by a field 
survey to evaluate the other public vehicles that use the reserved routes.   

Intersection characteristics 
The traffic data were used to determine the intersections for which the traffic flow of all 
legs were available. Therefore, a reconnaissance survey was undertaken at the 
intersections to evaluate their characteristics and, in particular, their geometric layout. 
All the intersections that were not included in the types considered by the accident 
prediction models to be analysed were eliminated. Moreover, a detailed study was 
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conducted to eliminate all intersections that were modified (geometric layout, 
regulation, etc..)from the first year of the accident database. Finally, 70 intersections 
were considered for the following analysis. Subsequently a second reconnaissance 
survey was undertaken at all intersections collecting the data included in the check list 
shown in figure 1. This check list was developed on the basis of the geometric variables 
used by the accident prediction models to be analysed. 
 
1. Intersezione
              ...............................................................

2. Controllo intersezione Non controllata Precedenza Stop Semaforo

3. Numero corsie strada principale

4. Numero corsie strada trasversale

5. Presenza spartitraffico

6. Trattamento  svolta a sinistra- strada principale No svolta a sinistra Con corsia esclusiva per svolta

7. Tipologia corsia di svolta a sinistra- strada principale

8. Trattamento svolta a sinistra- strada secondaria No svolta a sinistra Con corsia esclusiva per svolta 

9. Tipologia corsia di svolta a sinistra- strada secondaria

10. Trattamento svolta a destra- strada principale No svolta a destra Con corsia esclusiva per svolta

11. Tipologia svolta a destra- strada principale

12. Trattamento svolta a destra- strada secondaria No svolta a destra Con corsia esclusiva per svolta

13. Tipologia svolta a destra- strada secondaria

14. Senso di marcia strada principale

15. Senso di marcia strada secondaria

16. Semaforo A tempi fissi Attuato

17. Fasi semaforiche

18. Segnaletica stradale

19. Pendenza longitudinale strada principale Piana Forte pendenza

20. Pendenza longitudinale strada secondaria Piana Forte pendenza

21. Larghezza media corsia strada principale

22. Larghezza medi corsia strada trasversale

23. Larghezza marciapiede laterale strada principale

24. Larghezza marciapiede laterale strada secondaria

25. Illuminazione

26. Accesso controllato sulla strada principale

Strada principale
  ...............................................................

Starda secondaria
....................................................................

....................................................................

....................................................................

Assente Presente

Senza corsia esclusiva per svolta

 Disegnata Protetta da spartitraffico

Senza corsia esclusiva per svolta

 Disegnata Protetta da spartitraffico

Senza corsia esclusiva per svolta

Non provvisto per svolta libera Provvisto per svolta libera

Senza corsia esclusiva per svolta

Non provvisto per svolta libera Provvisto per svolta libera

Senso unico Doppio senso

Senso unico Doppio senso

Semiattuato

2 Multi fase

Presente Assente

Leggera pendenza

Leggera pendenza

....................................................................

....................................................................

Nessuno Parziale

....................................................................

....................................................................

Assente Presente

 
Figure 1 – Field survey check list 

Table 5 summarizes traffic, accident and control type data of the intersections used 
for this study. The type “No control” includes the intersections that do not present any 
horizontal or vertical sign; therefore, the right way depends only on the road code rules. 
It should be noted that for three types there are only two or three  intersections; this 
limitation must be considered in the following transferability evaluation. 

MODEL PERFORMANCE MEASURES 
Several goodness-of-fit (GOF) statistics to assess model fit to Trieste data were 

used.  It is important to note that only after an assessment of several GOF criteria has 
been made, can the performance of a particular model or set of models be assessed. 
Moreover, it should be noted that the evaluation of the GOFs is subjective, therefore the 
evaluation of transferability of the models in this study also remains a subjective 
opinion of the authors. The GOF measures used were: 

Pearson’s Product Moment Correlation Coefficients Between Observed and Predicted 
Accident Frequencies 
Pearson’s product moment correlation coefficient, usually denoted by r, reflects the 
degree of linear relationship between two variables Yp and Yo. Pearson’s product 
moment correlation coefficient is given as: 
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Where  

pY  the mean of the Yip predicted accidents 

oY   the mean of the Yio observed accidents 
Yip predicted accidents at i intersection  
Yio observed accidents at i intersection  
n validation intersection sample size  
 
Pearson’s product moment correlation coefficient ranges from +1 to -1. A correlation of 
±1 means that there is a perfect positive/negative linear relationship between predicted 
(Yp) and observed (Yo) values. A correlation of 0 means there is no linear relationship 
between values. Therefore a low coefficient suggests that the model is not able to 
predict the observed data well.  
 

Table 5 – Characteristics of Intersection types 

Type 

N
um

be
r 

A
cc

id
en

t 
Se

ve
rit

y accident data ADT 

per year Major Road Minor Road 

Min Max Mean Min Max Min Max 
3 leg          
No 

control 12 
Total 0.25 2.25 10.08 1428 8415 193 3777 Injury 0.08 0.75 3.92 

Give 
way 10 

Total 0.33 7.75 23.75 2322 22378 77 9830 Injury 0.08 3.50 9.08 

Stop 3 
Total 0.67 2.58 4.17 5235 12615 766 3468 Injury 0.17 1.42 2.00 

Signal 8 
Total 0.25 5.42 24.00 1855 23854 1498 11099 Injury 0.25 1.42 6.75 

4 leg          
No 

control 2 
Total 1.08 7.50 8.58 3171 5133 2806 3089 Injury 0.58 4.00 4.58 

Give 
way 2 

Total 8.25 11.92 20.17 3874 10391 882 1792 Injury 4.42 7.00 11.42 

Stop 8 
Total 1.25 9.50 42.25 2493 8732 573 2102 
Injury 0.58 5.00 22.33 

Signal 25 
Total 1.42 12.42 118.7 2460 24521 604 12355 
Injury 0.67 6.75 60.42 
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Mean Prediction Bias (MPB) 
The MPB is the sum of predicted values minus observed values in the validation data 
set, divided by the number of validation sample size. The MPB can be positive or 
negative, and is given by: 

n

YY
MPB

n

i
ipio∑

=

−
= 1

)(
 

This statistic provides a measure of the magnitude and direction of the average model 
bias as compared to observed data. The smaller the MPB, the better the model is at 
predicting observed validation data. A positive MPB suggests that on average the model 
overpredicts the observed data. Conversely, a negative value suggests systematic 
underprediction. The magnitude of MPB provides the magnitude of the average bias. 

Mean Absolute Deviation (MAD) 
MAD is the sum of the absolute value of the differences between the predicted values 
minus observed values, divided by the number of validation sample size. The MAD can 
only be positive and is given by: 

n

YY
MAD

n

i
ipio∑

=

−
= 1  

The MAD gives a measure of the average magnitude of variability of prediction. A 
large MAD suggests that the model is not able to predict the observed data well. 

Mean Absolute Percentage Error (MAPE) 
MAPE is the sum of the absolute value of the differences between the predicted values 
and observed values divided by the observed values again and by the number of 
validation sample size. MAPE is a measure of accuracy and it is expressed as a 
percentage. 

1001
1

⋅
−

⋅= ∑
=

n

i io

ioip

Y
YY

n
MAPE  

The magnitude of MAPE provides the magnitude of the average error in respect of  the 
observed value. A large MAPE suggests that the model is not able to predict the 
observed data well. It should be noted that the observed accidents in this study are 
calculated as an average per year and in no case is Yio  equal to zero.  

Washington et al. (Washington S. et al, 2005) also used the comparison between the 
Mean Squared Prediction Error (MSPE) and the Mean Squared Error (MSE) to reveal 
potential overfitting or underfitting of the models to estimation data. However, this 
comparison was not possible in the present study because the MSE of all the models 
evaluated were not available. 

To normalize the GOF statistics to compensate for the different number of years 
associated with different data sets, GOF statistics were computed on a yearly basis. 
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EVALUATION OF TRANSFERABILITY 
Depending on the number of legs and the type of control, the available intersections 

from table 5 were selected for each model which had to be evaluated. In particular, the 
intersections with both the controls “give-way” and “stop” and with at least one one-
way leg were considered for the priority intersection models developed by Summergill 
et al., whereas the intersections with all controls except “signal” were considered for the 
not signalized intersection model developed by Greibe. 

The accident database was used to calculate the Yio of each intersection, whereas the 
accident prediction models were used to calculate the Yip of each intersection. 
Therefore, the average number of predicted accidents, the average number of observed 
accidents and the GOF statistics were calculated for each model evaluated. Table 6 
shows the numbers of intersections used for each model evaluated and the 
corresponding statistics on a yearly basis.  

Table 6 – Transferability evaluation results (one-year basis) 

Model 

N
um

be
r o

f 
in

te
rs

ec
tio

ns
 

A
ve

ra
ge

 
ac

ci
de

nt
s 

pr
ed

ic
te

d 
A

ve
ra

ge
 

ac
ci

de
nt

s 
ob

se
rv

ed
 

MAPE r MPB MAD 

Bauer and Harwood – all accidents 
3-leg stop 3 3.89 1.39 247.0 0.36 2.50 2.50 
4-leg stop 8 3.04 5.28 57.62 -0.03 -2.24 2.88 
4-leg signalized 25 4.70 4.75 42.91 0.39 -0.04 1.50 
Bauer and Harwood  – injury accidents 
3-leg stop 3 1.65 0.67 234.1 0.54 0.98 0.98 
4-leg stop 8 0.93 2.79 63.93 0.11 -1.86 1.94 
4-leg signalized 25 1.37 2.42 38.80 0.35 -1.05 1.16 
Canale et al. – injury accidents 
3-leg no control 12 0.15 0.32 65.22 -0.01 -0.17 0.25 
3-leg stop 3 0.32 0.67 40.09 0.61 -0.35 0.35 
4-leg no control 2 0.76 2.29 68.50 -0.60 -1.53 1.84 
4-leg stop 8 0.62 2.79 69.56 -0.05 -2.18 2.20 
4-leg signalized 25 1.47 2.42 107.5 -0.03 -0.95 2.28 
Summergill et al. – injury accidents  
3 leg priority  8 0.46 2.24 70.07 0.65 -1.78 1.78 
4 leg priority  10 0.53 6.24 88.57 0.12 -5.71 5.71 
3 leg signalized 6 1.39 0.85 124.6 0.01 0.55 0.55 
4 leg signalized 24 1.32 2.24 39.98 0.25 -0.92 1.04 
Greibe – all accidents 
3 leg not signalized 25 0.40 1.52 69.00 0.34 -1.12 1.14 
3 leg signalized 8 0.94 2.38 102.2 0.03 -1.43 1.67 
4 leg not signalized 12 0.47 5.92 86.62 0.08 -5.45 5.45 
4 leg signalized 25 1.17 4.75 71.04 0.38 -3.57 3.57 
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Table 6 shows significant differences between the average accidents observed and 
the average accidents predicted by the models evaluated. Not considering the four cases 
with few intersections (less than 6), in five cases out of fifteen the average accidents 
predicted are more than three times lower than the average accidents observed. The 
MAPE, that gives a measure of the accuracy of the prediction models evaluated, shows 
values that achieve 247 percent, with a minimum value equal to 40 percent. Three cases 
have MAPE>100% whereas twelve cases have MAPE>50%. Pearson’s Product 
Moment Correlation Coefficients r has low values, with some exceptions only for 
models evaluated using few intersections. The MPB is negative, with only a few 
exceptions, showing that the models evaluated underpredict the observed accident 
frequencies. Considering that the accident database does not contain all the damage only 
accidents, it is significant to note that the models that predict total accidents (Bauer and 
Harwood, Greibe) with only one exception, also underpredict the observed accident 
frequencies. The MAD, that gives a measure of the average magnitude of variability of 
prediction, shows significant values if compared with the total number of accidents 
observed.  

Figure 2 shows an example of the observed versus predicted accident frequency for 
4-leg signalized intersections. It is evident from the figure that the models evaluated do 
not fit  the Trieste data well. 
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Figure 2 – Observed versus predicted accident frequency (4-leg signalized) 

In all, the analysis of the statistics in table 6 and of the graphics of the observed 
versus predicted accident frequencies, of figure 2, makes it possible to state that all the 
models evaluated are not able to predict accident frequency on the intersections of 
Trieste with sufficient reliability. 

It is significant to note that none of the four sets of models fits the Trieste data. 
Therefore, there is no geographic area for which the accident data can be considered 
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similar to the Trieste accident data, not even the models of Canale et al. developed in 
another Italian city. 

CONCLUSIONS 
The result of the transferability evaluation of accident prediction models shows that the 
models tested are not able to predict the accidents observed on the intersections of the 
Trieste urban area. This result makes clear that the use of existing accident prediction 
models for intersections not included in the same geographic area of those used to 
calibrate the model requires careful attention. This is true not only if the model was 
developed in foreign countries, but also if it was developed in Italy. Therefore, it is 
necessary to adjust the accident prediction of the existing model to suit the safety 
conditions present in the specific context. This adjustment could be made estimating a 
calibration factor or using the Empirical Bayes approach that consider the accident 
history data of the specific site. Therefore, both these procedures will require special 
attention on the part of Italian researchers in this field in the near future. 
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