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Synopsis 
This paper investigates the use of Distinct Particle Elements Method (DEM) to simulate the behaviour of a 
bituminous mixture in a Marshall test.  
To investigate the effect of particles number on material properties two different specimen generation 
procedures have been implemented: the up-scaling technique, that allows to enlarge the particles diameter 
with a great reduction of their number and consequently of the computational times, and the cluster logic, 
that allows to schematize aggregates with group of particles of arbitrary shape that are physically bonded 
together. 
For each test the stability-flow curve and the stresses in the specimen have been investigated. 
To point out DEM particular features in performance related modelling of asphalt concrete tests, the 
laboratory results have been reproduced also with a finite difference code. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Bituminous Mixtures Simulation With 
Distinct Particle Elements Method 

INTRODUCTION 
The Distinct Particle Element Method (DEM) for modelling the movement and interaction of assemblies of 
rigid spherical particles subjected to external stresses was developed by Cundall and Strack (1979).  
Although the DEM has been applied to model the behaviour of soils and granular materials (Cundall & 
Strack, 1979; McDowell & Harireche, 2002), it has not been widely used to investigate the mechanical 
behaviour of bituminous mixtures.   
The traditional approach to modelling asphaltic materials is to treat them at the macro-scale using continuum 
models based on the Finite Element Method (Collop et al., 2004). It requires the division of the problem 
domain into a collection of elements of standard shapes (triangle, quadrilateral, tetrahedral, etc.). The 
continuum assumption implies that at all points in the problem domain the materials cannot broken into 
pieces; all points originally in the neighbourhood of a certain area remain in the same neighbourhood 
throughout the deformation process (Jing, 2003). 
A DEM model instead is composed of distinct particles that displace independently from one another and 
interact only at contact points. Their interaction is treated as a dynamic process with states of equilibrium 
developing whenever the internal forces balance. The contact forces and displacements of a stressed 
assembly of particles are found by tracing the movements of the individual ones.  
The calculations performed in DEM alternate between the application of Newton’s second law to the particles 
and a force-displacement law at the contacts (figure 1). The first is used to determine the motion of each 
particle arising from the contact and body forces acting upon it, while the second is used to update the 
contact forces arising from the relative motion at each contact.  
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Figure 1: Calculation cycle in DEM 

 
A contact model, that describes the physical behaviour occurring at a contact, is composed of three parts: 
• a contact-stiffness model, that provides a relation between the normal (FBnB) and shear (FBsB) components 

of contact forces and the relative displacements ( , ). The most diffused for his simplicity is the 

linear model, in which the forces and displacements are linearly related by the contact stiffness ( , ): 
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• a slip and separation model: the slip condition occurs when the shear component of force ( ) reaches 

and exceeds the maximum allowable shear contact force ( ). This value is taken to be the minimum 
friction coefficient of the two entities in contact (
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normal component of force ( ): i
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• a bonding model: the contact bond reproduce the effect of an adhesion acting over the vanishingly small 

area of the contact point (figure 2). 
   



   

 
Figure 2: Contact scheme 

 
The Distinct Particles Element Method is very suitable to model the interaction of discrete objects subjected 
to large displacements or failure processes, because, differently from the continuum methods, it is possible 
to investigate the system evolution after the failure, over which the domain separation in blocks is admitted. 
Since the objective of this paper is to simulate a Marshall test using the DEM approach, it has been 
necessary to generate first a specimen that replicates the laboratory asphalt mixture and second a suitable 
test equipment.   

 

NUMERICAL SAMPLE PREPARATION PROCEDURE 
Particles Generation 
The models parameters have been determined by comparing experimental Marshall results with the 
numerical ones. In according with the granulometric curve of the lab mixture (figure 3), after modelling of the 
breaking heads by a ring of 100 mm diameter, three different particles generation procedures have been 
performed: 
• the first, based on circular particles. In this way six specimens have been modelled, generating first the 

particles held to 10 UNI sieve and then the others; 
• the second, based on cluster logic, that, allowing to schematize particles with group of elements of not 

circular but arbitrary shape, are more representative of asphalt concrete aggregates; 
• the third, based on up-scaling technique (Hainbüchner et al, 2003). 
 

0.01 0.1 1 10 100

Sieve size [mm]

0

10

20

30

40

50

60

70

80

90

100

%
 P

as
si

ng

 UNI Sieve [mm] % Passing 
15 100.00 
10 94.64 
5 60.00 
2 38.45 

0.4 18.39 
0.18 9.44 

0.075 6.04 
 

 

 
Figure 3: Granulometric curve for lab mixture  

 
In figure 4 the model with 58000 particles (called H 58000) is represented. 

 



 
Figure 4: H 58000 model 

 
The up-scaling technique consist of multiplying the particles diameter for a factor S. In this case: 10=S . So 
the up-scaled granulometric curve has the same shape of laboratory one, but it is shifted of a value (∆D) 
given by the following formula:   

( ) iniDSD ⋅−=∆ 1                                                                                                                                       (4) 

where S is the up-scaling factor and  is the medium dimension of the laboratory granulometric curve. iniD
The measured and modelled properties values are shown in table 1, where each mixture is called by her 
particles number. 
 
Table 1: Granulometric parameters of the modelled mixtures  

Model A 100 B 200 C 600 D 2000 E 11500 
(Cluster) 

G 21000 H 58000 Up-scaled 
Model 

F 20000 

Particles 
number 113 215 655 2285 11472 21626 58429 Particle 

number 20385 

DBsieveB 

[mm] 
Passing 

[%] 
Passing 

[%] 
Passing 

[%] 
Passing 

[%] 
Passing 

[%] 
Passing 

[%] 
Passing 

[%] 
DBsieveB 

[mm] 
Passing 

[%] 
15 100 100 100 100 100 100 100 150 100 
10 39 43 47 48 70 93 93 100 95 
5 3 10 15 18 45 48 50 50 60 
2   6 9 25 25 27 20 39 
0.4    3  10 12 4 18 
0.18      4 7 1.8 9 
0.075        0.75 6 

 
In figure 5 some of laboratory and modelled granulometric curves are represented.  
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Figure 5: Granulometric curves  



Contact Models Definition 
The bitumen of the laboratory mixture is a 50/70 PG. 
Each mix, except the E 11500 generated with cluster logic, was numerically modelled with the Burger’s 
model shown in figure 6. It comprises a spring and dashpot in parallel, connected in series to a spring and 
dashpot in series. It can readily be shown that the time dependent stiffness of the Burger’s model in i 
direction is given by (Collop et al., 2004): 
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where: 
t is the loading time;  

iK 0  is the modulus of the spring connected in series; 
iK1  is the modulus of the spring connected in parallel; 
iC∞  is the viscous damping constant of the dashpot connected in series; 

iC1  is the viscous damping constant of the dashpot connected in parallel; 
sss KC 11=τ  is the relaxation time. 
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Figure 6: Burger’s model 

 
The normal (kBnB) and shear (kBsB) contact stiffnesses have been estimated from shear modulus (G’), bulk 
modulus (K’) and Poisson ratio (ν) of the laboratory specimen (table 2), as follows (Cundall & Al., 2003): 
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where: 
n is the porosity; 
L is the distance between the centre of gravity of two particles in contact; 
R is the particle medium radius. 
 
Table 2: Properties of the laboratory mixture (temperature = 60°C) 

ρ  
[Kg/mP

3
P] ν K’ 

[MPa] 
E’  

[MPa] 
G’ 

 [MPa] 
2322 0.15 450 945 411 

 
The model parameters have been chosen arbitrarily to obtain predicted stability-flow curves similar in 
magnitude and shape to measured data. Table 3 contains the contact stiffnesses values and the Burger’s 
model properties of the numerical tests; figure 7 shows the regression curves of normal (kBnB) and shear (kBsB) 
contact stiffnesses versus particles number. 
 
 



Table 3: Contact stiffnesses values and Burger model parameters of the numerical tests (T = 60°C) 
Normal stiffness Shear stiffness 

MN/m MN/m MN/m MNs/m MNs/m MN/m MN/m MN/m MNs/m MNs/m Model 
CP

n
PB1B KP

n
PB0B KP

n
PB1B CP

n
PB∞B kBnB CP

s
PB1B KP

s
PB0B KP

s
PB1B CP

s
PB∞B kBsB 

A 100 7.9·10P

2
P 1.6·10P

1
P 1.6·10P

1
P 3.2·10P

2
P 1.5·10P

1
P 7.9·10P

2
P 2.0·10P

3
P 4.0·10P

3
P 3.2·10P

2
P 2.1·10P

1
P 

B 200 2.5·10P

2
P 1.6·10P

1
P 1.6·10P

1
P 1.0·10P

2
P 7.7·10P

0
P 7.9·10P

2
P 2.5·10P

4
P 5.0·10P

4
P 3.2·10P

2
P 6.0·10P

0
P 

C 600 2.5·10P

2
P 1.6·10P

1
P 1.6·10P

1
P 1.0·10P

2
P 2.8·10P

0
P 3.1·10P

2
P 2.5·10P

4
P 5.0·10P

4
P 1.3·10P

2
P 2.3·10P

0
P 

D 2000 2.5·10P

1
P 1.6·10P

1
P 1.6·10P

1
P 1.0·10P

1
P 1.4·10P

0
P 7.9·10P

3
P 2.5·10P

2
P 5.0·10P

2
P 3.2·10P

3
P 1.1·10P

0
P 

E 11500 7.9·10P

0
P 7.9·10P

0
P 7.9·10P

0
P 1.0·10P

1
P 2.8·10P

-1
P 2.5·10P

3
P 5.0·10P

4
P 1.0·10P

5
P 1.0·10P

2
P 2.2·10P

-1
P 

G 21000 1.9·10P

3
P 2.5·10P

2
P 2.5·10P

2
P 3.2·10P

2
P 1.2·10P

-1
P 1.9·10P

1
P 2.5·10P

6
P 2.5·10P

6
P 3.2·10P

0
P 1.1·10P

-1
P 

H 58000 1.9·10P

3
P 2.5·10P

2
P 2.5·10P

2
P 3.2·10P

2
P 5.6·10P

-2
P 1.9·10P

1
P 2.5·10P

7
P 2.5·10P

7
P 3.2·10P

0
P 4.6·10P

-2
P 

F 20000 1.9·10P

3
P 2.5·10P

2
P 2.5·10P

2
P 3.2·10P

2
P 1.8·10P

-1
P 1.9·10P

1
P 2.5·10P

6
P 2.5·10P

6
P 3.2·10P

0
P 1.6·10P

-1
P 
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Figure 7: Regression curves of normal and shear stiffness versus particles number 

 
The contact friction coefficient ( µ ) has been estimated from the friction angle of the aggregates of the 
laboratory mixture ( °= 35φ ). In this case: 8.0=µ .   

LABORATORY EQUIPMENT MODELLING 
After the sample generation, the numerical test have been carried out by moving the upper and lower 
breaking heads in the vertical direction with a constant velocity of 0.425 mm/sec (figure 8). The coefficient of 
friction between the loading plates and the sample was set to be zero. 
 

 
Figure 8: General model set-up of Marshall test 

 



For each test the stresses on the horizontal and vertical medium planes in the specimen have been 
investigated through measurement circles of 5.08 mm radius (figure 9). 

 

     
Figure 9: Measurement circles  

 

MODELLING RESULTS  
For each test the following quantities have been monitored: 
• stability-flow curves; 
• contact forces distribution inside the specimen; 
• shear and normal stresses inside measurement circles represented in figure 9. 
 
Table 4 and figure 10 show stability-flow curves obtained by models.  
 
Table 4: Stability and flow values of modelled specimens 

 Laboratory 
specimen A 100 B 200 C 600 D 2000 E 11500 G 21000 H 58000 F 20000 

Stability (S) [N] 12411 12948 13652 13451 13522 13416 12834 12951 12099 
Flow (s) [mm] 2.20 1.56 1.94 2.52 2.10 2.58 2.86 2.23 2.35 
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Figure 10: Stability-Flow Curves 

 
There is a good agreement between numerical results and experimental behaviour of asphalt concrete. All 
tests, independently of stability value, show the same trend: a first elastic segment, in which load and 
displacement are linear dependent, and a second visco-elastic behaviour. The visco-plastic component is 
absent because the contact model adopted in this case does not provide for it. 



The analysis of the contact forces distribution inside the specimen for flow corresponding to stability show an 
axial symmetry (figure 11). The contact forces increase to growth of particles number. 
During the laboratory tests the load applied to the specimen by breaking heads induces inside asphalt 
concrete a stress state which spreads inside the sample immediately, with a velocity higher than the 
modelled tests. In this case, in fact, the stresses produced by loading head share out among particles from 
sample perimeter to centre. The velocity of the stress wave, which depends of contact stiffnesses, has been 
estimated from equations (1), (2) and (5) as follows: 
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where  and are respectively the relative displacement and the relative velocity between two adjacent 
particles. 

irs , irv ,

By equation (8), supposing that the particles displacement and velocity decrease linearly from breaking 
heads to specimen centre, it has been evaluated ,  and the value of flow (sBdB) corresponding to 
stability that takes into consideration the stress wave delay (table 5). It is measured on the medium 
horizontal plane. 

irs , irv ,
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Figure 11: Contact forces distribution inside the specimen for flow corresponding to stability 



Table 5: vBr,iB , sBr,iB and sBdB values of modelled specimens 

Model Stability  
[N] 

vBr,iB 
[mm/s] 

sBr,iB 

[mm] 
sBdB 

[mm] 

A 100 12948 3.2·10P

-3
P 1.01 4.70 

B 200 13652 3.2·10P

-3
P 0.92 6.20 

C 600 13451 2.9·10P

-3
P 0.73 9.59 

D 2000 13522 1.4·10P

-3
P 0.47 12.18 

E 11500 13416 1.1·10P

-3
P 0.20 11.58 

G 21000 12834 3.7·10P

-4
P 0.08 7.00 

H 58000 12951 1.3·10P

-4
P 0.03 4.21 

F 20000 12099 5.0·10P

-4
P 0.11 9.21 

 
For each test it has been measured the vertical and horizontal stresses distribution inside circles shown in 
figure 9, for flow corresponding to sBdB (figures 12 and 13). The areas subtended by the curves represent 
respectively the vertical (FBVB) and horizontal (FBHB) stress resultants. The first one has been compared with 
stability values (∆FBVB) (table 6). 
 
Table 6: Vertical and horizontal stresses resultant 

DBVerticalB DBHorizontalB 

Model FBHB  
[N] 

FBVB  
[N] 

∆FBV 

[%] 

A 100 2541 13870 7.12 

B 200 3793 14025 2.73 

C 600 3525 14811 10.11 

D 2000 5221 13227 2.18 

E 11500 6193 13957 4.03 

G 21000 12507 12988 1.20 

H 58000 12356 12561 3.01 

F 20000 11825 12110 0.09 
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Figure 12: Compression stresses on horizontal diameter for flow corresponding to sBdB 
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Figure 13: Tensile Stresses on vertical diameter for flow corresponding to sBdB 

 
From difference between sBdB and s values ( sss d −=' ) it is possible to evaluate the stress wave delay. This 
is a function of particles number, as indicate in figure 14.  
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Figure 14: Stress wave delay 

 
To identify the model that shows the better agreement with the experimental results, stability-flow curves 
reported in figure 10 have been studied. Table 7 and figure 15 show the comparison between laboratory and 
modelled data in terms of stability (S) and flow (s). 

 
Table 7: Comparison between experimental and modelled data  

Modelled specimens 
 Laboratory 

specimen A 100 B 200 C 600 D 2000 E 11500 G 21000 H 58000 F 20000

S [N] 12411 12948 13652 13451 13522 13416 12834 12951 12099 

∆S [%] - 4.33 10.00 8.38 8.95 8.10 3.40 4.35 2.51 

s [mm] 2.20 1.56 1.94 2.52 2.10 2.58 2.86 2.23 2.35 

∆s  [%] - 29.09 11.82 14.55 4.55 17.27 30.00 1.36 6.81 
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Figure 15: Comparison between measurement and calculated results 
 
Tests results shows that the best model is H 58000: in this case predicted and measured curves are similar 
in magnitude and shape. Stability and flow calculated are respectively 4.35% and 1.36% higher than those 
calculated for laboratory specimen. 
To point out DEM particular features for the performance related modelling of asphalt concrete tests, the 
laboratory results have been reproduced with a finite difference code. 
It has been modelled a grid with a circular boundary of 100 mm radius (figure 16). A uniform velocity of 0.85 
mm/sec has been applied in the y-direction at the upper semicircle to induce sample compression. At each 



zone it has been assigned a Mohr-Coulomb model, with the same constitutive properties of lab sample (table 
2). For defining cohesion (C) and angle of friction (φ) of the asphalt mixture the “C-φ Model” has been used 
(Fwa et al., 2001). This illustrates a link between Marshall results and the triaxial test properties of C and φ 
as follows: 

φ496.00447.014 ++−= CS                                                                                                                       (9) 
ECs log3444.600639.01.15 −+=                                                                                                          (10) 

where: 
S is Marshall stability [kN]; 
s is the Marshall flow [mm]; 
C is the cohesion [kPa]; 
φ is the angle of friction [°]; 
E is the elastic modulus [MPa]. 
In this case C = 935.42 kPa and φ = 31.1°. 
 

 
Figure 16: Sample modelled by finite difference code 

 
For the modelled specimen, called FD, the stability-flow curve has been compared with laboratory and H 
58000 results (table 8 and figure 17). The two modelled specimens show approximately the same flow, but 
FD stability is smaller than H 5800 and experimental values. 
 
Table 8: Comparison between experimental, H 58000 and FD data  
 Laboratory specimen H 58000 FD 

S [N] 12411 12951 9151 

s [mm] 2.20 2.23 2.00 
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Figure 17: Comparison between stability-flow curves of FD, H 58000 and lab mix 

The comparison between measured and calculated stability-flow curves points out the power of DEM 
approach. Knowing the relationships between the mechanical macroscopic behaviour and the microscopic 
parameters of the model, DEM well supports the researcher in the laboratory tests phase for the mixture 
optimization as well as for the implementation of new methods for studying the asphalt fatigue resistance in 
pavements. 

 

CONCLUSIONS 
Based upon the developed research work, the following concluding remarks can be stated: 
• the DEM approach has been used to model the behaviour of asphalt mixtures in a Marshall test; 
• to investigate the effect of particles number on material properties the up-scaling technique and the 

cluster logic have been performed. By the second, in particular, more complex particle shapes can be 
generated and a graded aggregate can be simulated more realistically without sacrificing computational 
time; 

• a Burger’s model was introduced to give a time dependent shear and normal contact stiffnesses; 
• the comparison between lab and numerical results show remarkable agreement. The modelled 

experiments are able to reproduce the main features of a Marshall test, both in qualitative and 
quantitative manner. The mayor difficulty is relate observed behaviour to the micromechanics of the 
materials. 

• knowing the relationships between the mechanical macroscopic behaviour and the microscopic 
parameters of the model, DEM well supports the researcher in the laboratory tests phase for the mixture 
optimization. 
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