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Synopsis 
The use of over-simplistic models (occasionally borrowed from the field of railway traffic research and suited, 
therefore, to a constrained mode of driving and rationally organized traffic) to represent driving behaviours 
has often proved misleading in the most critical of driving conditions. 
The most restrictive scenarios have always been thought to be those relative to an isolated vehicle and to a 
concept of speed linked only to road geometry. 
A picture of effective driving conditions has very often been built up by monitoring vehicle speeds at 
preordained points along the road using instruments such as speed cameras or coils but data relative to 
variations in speed and trajectory as a function of traffic and environmental complexity have been lost in the 
process. 
Given that the main justification put forward for not using more complex diagnostic tools is their cost, this 
paper aims to illustrate a procedure designed to derive some of the most representative variables, such as 
speed, acceleration, distance between vehicles and trajectory using Image Analysis techniques. 
In particular, video images recorded using simple cameras positioned inside the vehicle or at fixed points on 
the road have allowed very reliable data to be collected at very low cost.  
The methodology also solves the problems associated with positioning the speed camera at a fixed point, 
which notoriously gives speed readings that fail to reflect situations of real ranger; it also provides easy-to-
read data on interactions between vehicles. 
In this paper the aim is not to propose new models of driving behaviour, already illustrated in the lately by the 
Authors (see the References), but suggest a technique useful to monitor the driving behaviour of unaware 
users belonging to the traffic flow. This method will allow in the next future to integrate and improve the 
existing models about with less effort and cost. 
The application was tested on a provincial highway in the municipality of Messina known for its high accident 
rate and provided valuable information, the reliability of which can be established probabilistically. 
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INTRODUCTION 
Driving behaviour is a direct consequence of the stimuli that the driver receives from the road infrastructure, 
from the surrounding environment and from the environment inside the vehicle  
While there is near-universal consensus that the former two factors certainly affect driving behaviour, the 
influence of the vehicle itself, and vehicle subsystems, has only recently begun to attract research attention. 
We only need think of the effect of radio and cell phone use, not to mention the ways in which the use of 
driving aids might significantly prejudice vehicle control and raise the need for more elaborate driving 
manoeuvres. 
Driver perceptions of the road context are the result of analyses based on an unconscious selection of 
information received from the surroundings; the speed at which this analysis takes place will vary with driving 
ability and experience, the complexity of the road environment and the number of activities being performed 
simultaneously by the driver (Bosurgi et al., 2003, 2004, 2005). 
In order to examine these issues, our study focused on driver behaviour in relation to both road environment 
and interaction with the vehicle. This was achieved by means of a procedure which required the 
development of software capable of calculating a series of characteristic variables (such as distance, speed 
and relative acceleration between the vehicle filming the scene and the target vehicle being pursued along 
the stretch of road) from recordings made using special equipment. 
By manipulating these variables it is possible to derive the speed and absolute acceleration of the target 
vehicle on a second by second basis; this information can be used to analyse variations in these values and, 
consequently, to show how the car under study interacts with other vehicles.  
The above algorithm was developed using MATLABP

®
P (Gonzales & Woods, 2004) and is based on Computer 

Vision (CV), or artificial vision, techniques. Computer Vision is a branch of Informatics which specializes in 
the processing of digital images (films and photographs) in order to extrapolate properties from subjects of 
study (Meini, 1996) (Iannizzotto, 2004). 
This study was mainly motivated by the desire to improve on more traditional approaches and propose a 
methodology that would make it possible to confirm or reject the validity of some interesting models used to 
describe driving behaviour but, above all, to study the driving behaviour of persons unaware that they are 
being monitored. 
Such monitoring has traditionally been undertaken by placing speed cameras along the road, but this 
method has the following limitations:  

• it only provides speed measurements at the points at which cameras are located; valuable 
information on acceleration-deceleration, by far the most useful in studies of road safety, is thus lost; 

• it provides no information about vehicle occupation of the cross-section of road;  
• it does not, therefore, allow for the influence of road context. 

It must be pointed out that the many image processing applications available for use in road/driving contexts 
are generally employed in the design of driving aids for the so-called ‘smart car’. The methodology described 
in this paper, however, proposes to analyse the ‘human factor’ and attempt to identify road safety levels 
through observation of driver behaviour; it is hoped that this information might help suggest design solutions 
able to guarantee improved road safety. 
 
CAR TRACKING 
The difficulty posed by car tracking can be summarized as follows: if there is a frame and the position of the 
vehicle in the previous frame is known, it’s necessary to find this position in the current frame (Van Leuven et 
al., 2001). 
Observation of a vehicle image will show it to have well-defined contours in areas of vehicle-background 
transition. The outline produced by these contours is not always regular but can be approximated by a 
rectangle (box). Identifying the position of a vehicle in a single frame is therefore the same as identifying the 
box that ‘contains’ it in that same frame. The size of the box will increase and decrease from frame to frame 
depending on whether the target vehicle is getting closer to or further away from the video camera. Since 
frames are captured in quick succession, it is reasonable to assume that the box will have moved little from 
one frame to the next. Thus, at each step the previous position of the box can be taken as the basis from 
which to derive a reasonably reliable estimate of the current frame’s new position (Stein et al., 2003). 
To find the box that approximates the vehicle contour we used an energy minimization technique based on 
Bayes’ theorem. Since the box we are seeking must have very distinct contours on all sides, one of the most 



obvious ways to proceed is to define an objective F function that measures the extent of discontinuity of blur 
along a particular contour. It is clear that such a procedure will involve the use of gradient images determined 
from film frames. It must be remembered that the higher gradient values are typical of the areas 
characterized by great variations in intensity, i.e. where contours are distinct. One possible choice for F is as 
follows: 
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where (t, l) and (b, r) are the coordinates of the top-left and bottom-right vertices of the box respectively, 
while GBxB e GByB are the respective vertical and horizontal gradient images. Any addendum to the second 
member of this formula represents an integral mean and the function to be integrated is the component of 
the orthogonal gradient vector at the side of the box (contour) along which the integral function is calculated 
(Figure 1). 

 
Figure 1: Segmentation of target vehicle images 

 
The objective F function can be correlated with a Bayesian plausibility function using the Gibbs/Boltzman 
distribution. The latter derives from statistical mechanics and is a product of the insight that lower energy 
states are more likely than higher energy states. Thus, if the energy term is defined as E F= −  and 

 indicates the four-component vector that identifies the position of the box, then the 
Bayesian likelihood that the box is in position u, given the information available from the image I, can be 
expressed as follows: 

Tu [t b l r]=

( )E u,I1P(I | u) e
k

−=  

where k is a normalization factor that effectively makes the first member a probability (i.e. a number between 
0 and 1). 
In order to estimate a posteriori probability using Bayes’ theorem, it is necessary at this point to introduce a 
term which indicates an a priori probability. This can be done by observing that the box which approximates 
the vehicle contour will not move much from its position in the previous frame and thus a simple way of 
defining P(u) a priori is to use a Gaussian probability density function based on the previous uB0 Bposition 
occupied by the box: 
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Since the Gaussian function has its peak at uB0B, the probability that the multidimensional aleatory variable u 
will fall around uB0B is higher than the probability that u will fall within the same range but far from uB0B. 
According to probability theory terminology, uB0B is the mean vector and Σ the covariance matrix. It must be 
remembered that the latter is a symmetrical matrix with variances on the main diagonal and cross-
covariances or cross-variances of the aleatory variable  outside it: Tu [t b l r]=
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In our case, the covariance matrix measures the extent of uncertainty inherent in the assumption that the box 
moves little from one frame to the next.  
The a posteriori probability P(  is given by the Bayes formula: u | I)

P(I | u) P(u)P(u | I)
c

⋅
=  

where c is the normalization constant. 
The position of the box in the current frame is ultimately obtained by calculating the vector u that maximizes 

 a posteriori and takes the name of maximum a posteriori (MAP):  P(u | I)

u
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By manipulating the last equations, we also have: 
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which is equivalent to minimizing the following sum of energy terms: 
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Briefly, to estimate the MAP it is necessary to minimize the sum EBpostB of two energy functions: verosE E(u= , 

which measures how probable an image I is given u, and , which codifies a 
priori knowledge about u. 
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Estimating the distance and relative speed of the target vehicle  
The following paragraph describes a procedure designed to estimate, on a frame-to-frame basis, the 
distance and relative speed of a vehicle being pursued by a car equipped with a video camera. To be able to 
do this, it is essential to know the position and outline of the target vehicle in each of the frames; this 
information can be obtained using the car tracking technique illustrated in the previous paragraph. The 
standard scenario is: flat road surface and video camera optical axis parallel to the road surface. The 
scheme outlined in Figure 2 shows: 
• (A) = trial vehicle equipped with videocamera V (on the rear-view mirror, for example) located at a height 

of HBVB with respect to the road surface;  
• (B) = target vehicle pursued by (A); 
• Z = distance to be estimated between the video camera and rear of target vehicle (B); 
• I = image plane located at focal distance f from the videocamera V; 
• O = point traversed by the road horizon line on the image plane;  
• P = projection onto the image plane of contact point C between rear wheel of vehicle (B) and road 

surface. 
 

 
Figure 2: Scheme for evaluating distance Z between trial vehicle and target vehicle. 

 
From the similarity of triangles VQC and VOP we can write: 
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from which the distance Z is obtained:  
VfHZ

OP
=  

with f and OP  in pixels and HBVB and Z in metres. The last equation shows that an increase in the 
OP segment, which is derived from the image after identification of the horizon line and vehicle outline, 
corresponds to a decrease in distance Z; the target vehicle is thus getting closer to the trial vehicle recording 
the scene. If an error of n pixels is made in estimating OP , the consequent error ZBerrB in distance Z is equal 
to: 
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and since we usually have n e, fHBVB>>nZ we ultimately obtain: 1≅
2

err
V

nZ Z
fH

≅  

i.e. the error ZBerrB increases with the square of the distance. 
Once the distance Z has been calculated, it is also possible to estimate the relative speed between the trial 
vehicle and the target vehicle. To this end, H will indicate the actual height (or W the actual width) in metres 
of the latter and h and h’ will be the heights (or w and w’the widths) in pixels projected onto the image when 
the target vehicle is at distance Z and Z’ respectively (Figure 3). Analogously to preceding equations, we 
have: 
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Relative speed can be expressed as the relationship between the variation in distance ∆Z=Z’-Z and the time 
interval ∆t in which the variation occurs: 
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Figure 3: Scheme for estimating relative speed v between trial vehicle and target vehicle. 

 



 
Figure 4: Graphic interface for studying the telemetry of the instrumentation-equipped vehicle.  

 
Interpretation of results 
The principal target ha been to organise a technique that permit to monitor some variables as speed, 
acceleration, position, etc., of the vehicles belonging to the traffic flow with the aim to evaluate the vehicle 
interaction.  
About the experimental strategy, it is necessary to highlight that this technique has been the only way to 
quantify the driving behaviour of not instrumented vehicles with so low cost. Furthermore, the trial has been 
intentionally simple, as regards the road length and the manoeuvre implicated, to calibrate the procedure in 
the best way, without mistakes in the quantification of the speed or distance.  
Another experimentation with a fixed camera would permit to understand the potentiality of the proposed 
method. Nevertheless, the analytic procedure is the same and, rather, the difficulties increase with the 
cameras inside the instrumented car. 
This paragraph aims to show how the output data derived from our experimentation and illustrated in the 
figures below can be used to analyse driving behaviour. Having determined the main variables characteristic 
of a journey, the next step is to interpret the motion of the trial vehicle and that of the other vehicles in the 
three-dimensional dynamic world.  
Figure 5 shows that the relative longitudinal distance ZBmB between the trial vehicle (henceforth Pr) and the 
target vehicle (henceforth Ob) decreases steadily from one frame to the next. This means that Pr gradually 
gets closer to Ob.  
The graph in figure 6 showing relative transversal distance YBtB, makes it possible to see which lanes the 
vehicles are moving in. Note that although there is limited scope for a vehicle to move sideways, the 
measurement of any movement in a sideways direction is of fundamental importance in interpreting its 
motion.  
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Figure 5: Relative longitudinal distance 
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Figure 6: Relative transversal distance 
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Figure 7: Relative speed 

 
By monitoring this position over a period of time it is possible to directly identify the lane in which the vehicle 
is moving and, in particular, to distinguish any change in lane from the small steering actions that occur 
within a single lane. In our case, YBtB always assumes high values, suggesting the two vehicles to be moving 
in different lanes. The highest YBtB values (around 6.5÷5.0 m) are observed in the initial stage of tracking , 
indicating that Pr is in the fast lane at this point and that the overtaking manoeuvre starts at a bend in the 
road. Subsequently, YBtB decreases until it reaches values of 3.8÷4.0 m, suggesting Pr to still be in the fast 

 



lane and to be proceeding in a straight line. 
The above is confirmed by observing the section of video in which the tracking occurs. This clearly shows Pr 
performing an overtaking manoeuvre that starts on a bend (in particular, Ob is already negotiating the curve) 
and proceeding in a straight line, in line with the progress of ZBmB and YBtB illustrated in Figures 6 and 7 
respectively. 
Analysis of the remaining graphs (Figures 7-13) will also help establish what kind of overtaking manoeuvre is 
involved. As is known, there are two basic scenarios for driver behaviour during an overtaking manoeuvre: 
1. a car proceeding along the inside lane encounters another car ahead proceeding at slower speed and is 

forced to slow down and line up behind it (adjusting its own speed to that of the slower car); 
subsequently, as soon as the oncoming traffic lane is perceived to be free, the driver accelerates and 
overtakes (overtaking with acceleration);  

2. a driver reaches another car proceeding at a slower speed and, seeing the oncoming traffic lane to be 
free, performs the overtaking manoeuvre without reduction in speed (overtaking at speed). Our study 
examines the second scenario. Figure 9 shows the speed vBprB of the trial vehicle (the vehicle performing 
the overtaking manoeuvre) to initially be constant (at 80 Km/h) and subsequently to decrease slightly. In 
addition, Figure 11 shows acceleration to remain around zero and to assume slightly negative values on 
the whole, in line with the trend for vBprB.  

Let us look at the relative speed vBrB graph in Figure 7. The values of vBrB are always negative, which indicates 
Pr to be proceeding at a consistently higher speed than Ob (also compare graphs in Figures 7 and 12). 
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Figure 8: Relative acceleration 
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Figure 9: Speed of trial vehicle 
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Figure 10: Space covered by the trial vehicle from the start of the sequence under analysis 
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Figure 11: Trial vehicle acceleration 
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Figure 12: Target vehicle speed 
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Figure 13: Target vehicle acceleration 

On the stretch of road where vBrB goes from around -20 Km/h to around -30 Km/h (frame 5093÷5110), i.e. 
where absolute relative speed values increase, Pr proceeds even faster than Ob; indeed, on this stretch vBprB 
is practically constant and vBobB decreases.  
Unlike vBrB, relative acceleration aBrB presents both positive and negative values (Figure 8). The convention for 
the sign for aBrB is similar to that adopted for vBrB, i.e. positive aBrB values indicate the acceleration of Ob to be 
greater than that of Pr.  
 
CONCLUSIONS 
This paper has illustrated the use of a tool based on Computer Vision that is able to monitor the position of 
vehicles within the field of vision of the mobile video camera recording the scene as well as their speed and 
acceleration both relative to the trial vehicle and absolute. This car tracking system, as it is known, 
constitutes the basis for interpreting motion and, consequently, for analysing driver behaviour in relation to 
the road environment and interaction with other vehicles.  
One of the greatest difficulties in vehicle behaviour analysis has been identifying the lane occupied by the 
moving vehicle. Identifying this lane depends partly on the position of the vehicle from which the video 
recording is being made. We were able to identify it by measuring the distance perpendicularly to the main 
direction of motion. A vehicle has limited freedom to move in a sideways direction. Even when it stays in 
lane, its motion is accompanied by slight steering actions and it can occasionally change lanes. It is difficult 
to distinguish between a small steering adjustment and a (slow) lane change when analysis is based only on 
the relative speed of the vehicle. To make this distinction, we found it more appropriate to consider the 
vehicle’s relative position rather than its speed.  
We believe the methodology proposed to constitute a useful practical and research tool for the following 
reasons:  
• It is indispensable in the continuous evaluation of magnitudes of movement, speed and acceleration of 

drivers who are unaware that they are being monitored;  
• It is possible to use a knowledge of these magnitudes for numerous vehicles to evaluate interaction 

between them:  
• It is possible to compute statistics for as large a sample of vehicles as desired; 
• The limitations of speed cameras, i.e. their ability to provide measurements only at certain points in the 

road, are overcome;  
• Models of driving behaviour proposed in literature can be verified;  
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