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Synopsis 
Most of the past studies of aggregates as used in pavement engineering have focused on large-scale 
observations of the material’s properties, trying to estimate and predict them as a whole using models that, 
often, descend from purely theoretical considerations. Therefore, the increased ability to describe overall 
performance sometimes does not explain the underlying causes. As a material’s macroscopic behaviour is in 
some way the outworking of particles interaction, it is unquestionable that a deeper understanding of these 
interactions and their effects is desirable. 
For this reason, the authors’ attention has focused on aggregates from a “geometric” point of view, aiming to 
link the general mechanical properties with small-scale characteristics. In this paper, the possibility of 
estimating the coordination number (number of contact points that an aggregate particle has with other 
aggregate particles) within the aggregate (either as an average or as a distribution) is considered of high 
importance, as other researchers have shown that it has a major influence on aggregate durability and 
permanent deformation. At this early stage, the study must be conducted in a theoretical way considering an 
“easy” material whose particles are all spheres. Once a conclusion is achieved with this simplification, the 
research will go further considering the real particles’ shape using parameters such as sphericity, angularity 
and roundness. 
As part of this more general packing theory, the most important step is to predict the coordination number for 
a random distribution of equal spheres, which is the main subject of this paper. If this target is accomplished, 
moving this knowledge to the multi-size case will just be one step forward. 
It must be said that this study has always been conducted from an engineering point of view rather than from 
a mathematical one. The authors’ ultimate aim is to produce a useful tool, not a theorem. 
Coordination number is recognized to be a function of the aggregate’s geometry: particle shape, grading and 
compaction degree are the factors that determine the spatial configuration of this system. If the considered 
material consists of spherical particles of the same size, two of these three factors disappear and 
coordination number becomes a function only of the compaction degree. Two different approaches were 
taken to identify this relationship: random generation of spheres on the surface of a central one and random 
box filling with equal spheres. Both these methods aim to generate a large data set from which to derive 
statistical observations on packing variability. 
The results obtained from the two methods enable the authors to clearly define the role that packing degree 
(in the form of solid ratio) has in affecting the sphere assemblies’ arrangements. The first method provided a 
statistical description of the contact points’ distribution on particle surface, while the second method 
delivered equations for predicting coordination number within an assembly of given solid ratio. 
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INTRODUCTION 
As a result of particle interaction within an unbound granular pavement material (UGM) when subjected to an 
external loading, one is able to observe its deformational behaviour and the changes in its mechanical 
properties. A UGM’s deformation is generally divided into permanent and resilient elements: the first one is 
broadly known to be due to rearrangement and fracture of the particles under each loading cycle, the second 
reflects the real elasticity of the grains and is recovered with unloading. Each complete cycle of loading and 
unloading draws a hysteresis loop in the stress-strain plane, which represents the loss of energy in terms of 
work carried out on the volume element: a great part of this energy is transformed into heat, some is used to 
damage the particles and only a small part is exploited to cause displacement. 
 
Thom and Brown [1] investigated the influence of grading and dry density on aggregate behaviour, 
performing repeated loading triaxial tests on specimens of various gradings and 3 different degrees of 
compaction. They observed a substantially constant resilient strain with respect to these parameters, with a 
slightly increasing trend as the aggregate became more compacted. This seems to indicate that the material 
itself basically rules the resilient properties, without any major influence from the volumetric distribution. Of 
higher relevance were their results about permanent deformation: “resistance to plastic strain is similar for all 
gradings when heavily compacted but, if the material is less well compacted, uniform grading has better 
resistance”. Shear strength is also greatly improved by increasing the degree of compaction. Permanent 
deformation and shear strength can then be considered to be highly influenced by geometric factors such as 
grading, void ratio, degree of interlocking and friction angle between the particles. 
A change in grading and void ratio can be expected to result in a different value of the coordination number 
(number of contact points between a particle and its neighbours) leading to a different stress distribution over 
the particle’s surface: a coarse aggregate consisting of grains of the same size with a small fine fraction will 
load each particle with higher tensile stresses than if the same particles were conveniently surrounded by an 
appropriate number of smaller particles. As shown by McDowell [2], “the probability of fracture is a function of 
applied stress, particle size and coordination number. When the effect of coordination number dominates 
over particle size in determining the probability of fracture for a particle, the resulting particle size 
distributions are fractal in nature. By choosing appropriate particle parameters, it is possible to obtain normal 
compression curves which resemble those found experimentally”. ([3] and [4]) 
Developing a tool to estimate the coordination number means, therefore, acquiring a deeper knowledge of 
the phenomena that rule the micro-mechanics of particles. This paper aims to clarify the relationship 
between coordination number and solid ratio (the proportion of a volume occupied by particles), separating it 
from the effects that particle shape and grading have on the aggregate spatial configuration. To do this, the 
geometrical properties of a material consisting of single-sized spherical particles have been studied from a 
statistical point of view. 
The problem of spheres’ packing involves many different branches of physics and mathematics, starting from 
the best way to stack oranges and including the coding and decrypting science. Most of the efforts have 
been concentrated on the study of single-sized spheres. Thus a variety of evaluations can be found in the 
literature that try to relate the mean coordination number to porosity ([5] and [6]), particularly for some 
“standard” packings. There are also some exact packing solutions for particular particle arrangements. 
For multi-sized systems the determination of coordination number is much more difficult than for a system of 
equal spheres: the number of variables rapidly increases and so does the information required. For example, 
a binary mixture gives three types of contacts: large-large, large-small (small-large) and small-small, with 
each type of contact having its own distribution. Very little useful information can be found in the literature 
about these problems ([6] and [7]). 
 
METHODOLOGY 
Due to the three-dimensional nature of the problem, a statistical approach seems to be more suitable than a 
deterministic one. It is, in fact, impossible to uniquely relate a certain value of solid ratio with a single 
coordination number: different configurations of spheres (i.e. different coordination numbers) can easily end 
up with the same solid ratio. The only thing that is reasonable to look for is the statistic probability for a 
certain coordination number to appear for a given solid ratio. This is, therefore, the aim of this project. 
 
Two different methods have been applied in order to reach a general overview. Both of them generate 
spheres’ three-dimensional configurations giving, as an output, the coordinates of the spheres’ centres in a 
Cartesian system, OXYZ, and the coordination number for each sphere. The solid ratio can then be 
calculated for each sphere as the ratio between the sphere’s volume and the volume of its “Voronoi” cell. 



In a system of spheres (A), the Voronoi cell belonging to one particular sphere (a) is defined as the total of 
the space’s points which are closer to the centre of a than to the centre of any other sphere of the system A. 
To state it in another way, it is the smallest volume totally enclosed by the planes which are perpendicular 
bisectors of lines joining the centre of sphere a to all other sphere centres. This concept is illustrated by a 
two-dimensional example in Figure 1. 
 
 

a

2D Voronoi cell
for sphere a 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Voronoi construction in 2 dimensions 
 
The modern use of the Voronoi construction began with crystallography, but since then it has become much 
more general proving its efficacy in disciplines like geography, ecology, and politics. Basically, it can be 
applied everywhere spatial patterns are analyzed to identify regions of activity or influence [8]. In the case of 
this study, it represents an excellent way to evaluate the portion of space “attached” to each sphere (Figure 
2). 

 

Outer spheres 

Inner sphere 

3D Voronoi cell 

Figure 2: 3D Voronoi cell in a spheres assembly 
 
Method 1: spheres on the surface of an inner one 
The first method used has been an attempt to generate all the possible configurations of spheres around an 
inner one of the same radius. Each outer sphere is identified by its contact (or “kissing”) point with the inner 
one, expressed in a spherical coordinates system centred on the inner sphere by the angles θ (longitude) 
and φ (latitude). To randomly generate the position of an outer sphere means, then, to produce a couple (θ; 
φ) indicating a kissing point on the surface of the central sphere. It is possible to demonstrate [10] that a 
statistically uniform distribution for those points can be achieved with θ and φ being taken as follows: 
 
θ = 2πu      (1) 
cosφ = 2v – 1 
 
with u and v being random real numbers between 0 and 1. It would be incorrect to select directly the 
spherical coordinates from the uniform distributions θ Є [0, 2π) and φ Є [0, π] because the points would be 
weighted towards the “poles” of the inner sphere. 
 
In order for the configuration to be geometrically acceptable, the chosen kissing point for the second (and 
subsequent) outer sphere must not permit the new outer sphere to overlap a previous outer sphere. The 
easiest way to check this condition is to impose that the distance between each pair of kissing points must 
not be less than one radius length (see Figure 3). 
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Figure 3: Non-overlapping condition 
 
There are, basically, two different algorithms to deal with this aspect, which are as follows. 
 
1P

st
P Algorithm 

Intuitively, the most direct way is to: 
 
� Pick one point; 
� Calculate its distance from all the previously saved points: is it too close to any? 
� YES, not acceptable, delete it; 
� NO, acceptable, save it. 
 
This simple algorithm has got two weak points that make it unsuitable for this study. First: it doesn’t know 
when to stop. The maximum possible number of spheres that may be placed is 12 (an observation known as 
the “Kepler conjecture” since it was first observed by Kepler [8]). However, this number belongs to a situation 
when all the spheres are very well packed all together. Therefore, it is possible (and, as will be shown later, it 
is very likely to happen) that after having placed 8-9 spheres randomly there is actually no physical way to 
place the 10th one, and this is perfectly acceptable. This first algorithm is not able to check this condition, 
thus it would go on forever trying to reach 12. Second: as the number of saved points increases, the number 
of attempts and the time to find the next acceptable coordination point increases greatly. This way, in a trial 
made by the authors, it was found that a normal computer would take a day for 8 points and a month for 9! 
Considering that the main target is to produce many thousands of configurations, this work would have taken 
a few centuries! 
 
2P

nd
P Algorithm 

Instead of going on picking the points in the whole surface of the inner sphere, it is much better to randomly 
pick each nP

th
P contact point only in the surface which remains available after having placed the previous n-1 

points: 
 
� Pick one point in the available area; 
� Save it; 
� Calculate the new available area. 
 
In this way both the problems of the previous algorithm are solved. First: the program will run as long as 
there is still any available area on the sphere’s surface, no matter what the number of placed spheres is. Of 
course, the maximum possible number is still 12, but we don’t need to define this. Second: the algorithm 
doesn’t need to make many attempts to pick a point, because it is just choosing it among the acceptable 
ones. Thus, with this new algorithm the required time to produce a full configuration is always few seconds. 
 
Each placed sphere thus reduces the available area for subsequent coordination points as shown in Figure 4 
for the plane case. Each new sphere placed will subtract (in the 2-D example) an angle equal to 1/3P

rd
P of the 

total (i.e. 2π/3 radians) from the available places where subsequent kissing may occur. The new angle 
subtracted is allowed to overlap as much as 1/6P

th
P of the total (i.e. π/3 radians) with the angle subtracted by 

previous placed spheres (see Figure 4d). 
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Figure 4: Concept of available angle and overlapping zone in 2 dimensions 
 
Due to the transformation (1) introduced before, a relationship is established which uniquely links each polar 
pair (θ; φ) to the correct value of the transformed pair (u; v). The sphere’s surface can then be exactly 
represented in a u-v space as a square of unit side as shown in Figure 5, where the shaded area is 
unavailable for the kissing point of the 4P

th
P outer sphere. 
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Figure 5: Representation of the inner sphere’s surface in the u-v space 



 
Moving from 2-D to 3-D the concept of available area does not change much: the angle becomes a cone 
around each ball and subtracts an area equal to 1/4P

th
P but, of course, still allows overlapping (see sphere 2 

and sphere 3 in Figure 5). Having already taken into account all the necessary restrictions, every single 
white zone that remains, even the smallest one, is suitable for a further kissing point. 
 
Method 2: equal spheres in a box 
The second method simulates the gradual filling of a cubic box with spheres of equal size, placing one at the 
time the new spheres in the depressions (“pockets”) formed by the previous ones. The algorithm does not 
allow for any rearrangement of the spheres that takes place in the physical experiments due to sphere’s 
weight. This does not represent a limit for the present study: as long as the authors aim to produce a random 
spheres’ assembly, there is no need for this assembly to be subjected to any physical law. Particles 
rearranging themselves due to gravitationally induced movements or compaction, provided they still deliver a 
random packing, only increment the average solid ratio. Therefore, configurations with high solid ratios 
become of more relevance than those with lower ones. 
 
As the target of this study is to analyse the whole range of possible solid ratios, and to associate 
coordination number with solid ratio, it is desirable to be able to fill the imaginary box in different ways to 
obtain different packings. Maintaining the random nature of this method, this can be done by the following 
deposition algorithm: 
 
� Randomly drop a sphere inside the box; 
� Place it in the lowest point (“pocket”) available within a given distance (d) from the falling point. 
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Figure 6: Different packings obtained varying parameter d 
 
This way, it is easy to see (Figure 6) that the best packed configurations will be those produced with the 
largest d, because each sphere has been placed in the lowest possible point and, therefore, it is possible to 
fill the box with a larger number of spheres (Num), while when d → 0 the spheres just “stick” where they fall, 
resulting in a looser packing. The obtained packings are, therefore, a function of d alone, while box size and 
sphere radius do not influence them. This concept is clearly shown in Figure 7 for the 6 different pairs of box 
size (b) and sphere radius (r) summarised in Tab 1. 



 
 

Tab 1: Different side-radius pairs used to produce Figure 7 
Analysis Box’s side (b) Spheres’ radius (r) b/r Av. Nroll 
A 100 10 10 107 
B 100 5 20 941 
C 100 3 33 4417 
D 50 5 10 105 
E 30 3 10 101 
F 60 3 20 915 

 
Column “Av. Nroll” of Tab 1 refers to the average number (Nroll) of spheres that can be placed with a 
different algorithm that, instead of moving the dropped sphere to the lowest point within the range d, drops 
each sphere in the box and makes it roll down until a position of stable equilibrium is reached. As shown in 
Tab 1, this number is a function only of the ratio b/r, therefore it is suitable to normalise the data as 
presented in Figure 7. 
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Figure 7: Dependence of the number of placed spheres (Num) on d 

 
Figure 7 shows that, after making the correct normalizations, the relationship between number of placed 
spheres (which also means solid ratio) and d is the same for all 6 analysis, provided d/r is large. It 
represents, therefore, a general rule for packings obtained by subsequent deposition, and can be used in 
this research in order to produce the necessary different configurations. 
 
However, we can note that the “roll-down” algorithm (that provides Av. Nroll) gives a slightly looser packing 
than the algorithm of Figure 6 with large d. Considering Figure 6, the “roll-down” algorithm would give the 
central result and not the right-hand one. Thus the maximum ratio in Figure 7 is slightly greater than 1, while 
a ratio of 1 is observed for d/r = 5 ± 1. 
 
The variability presented in Figure 7 for low d/r values is due to the first layer of placed spheres, i.e. the 
bottom of the packings: all the packings, in fact, have to start with a similar first layer, which for low values of 
d/r is denser than subsequent layers of spheres placed. This denser region affects the result in different 
proportion as the total number of spheres in the assembly changes. A, D and E, which have similar Av. Nroll, 
are affected more than B and F that, again, are affected more than C. Anyway, this imprecision will 
disappear from the real tests results when the bottom, top and side spheres are discounted as atypical and 
only the internal ones will be considered. 
 



Solid Ratio evaluation 
The solid ratio (SR) of the Voronoi cell and of the whole assembly has been used to represent the packing 
degree throughout all this work. It is generally calculated as the ratio between the solid part and the total 
volume (2) 
 
SR = Vsolid/Vtotal      (2) 
 
Voronoi cell determination 
Receiving as an input the Cartesian coordinates of the spheres’ centres, Matlab software [9] is able to find 
the coordinates of the vertices of each Voronoi cell within the given packing. Knowing these vertices, the 
Voronoi cell is the only convex solid that they can form. To calculate its volume, the triangular faces of this 
solid were determined using the Matlab function “convhulln”, which finds all the different “triplets” of vertices 
that form the convex solid’s faces. Once these triplets are known, the Voronoi cell’s volume is found as the 
sum of the volumes of the tetrahedrons that each triangular face forms with the cell’s centre (the centre of 
the central sphere). 
 
MAIN RESULTS 
Results from the spheres generation 
As shown in Figure 8, all of these final configurations have a minimum coordination number of 6, which 
means that this is the minimum number of spheres needed to randomly occupy the whole available surface. 
Every random sphere generation has, therefore, reached at least 6 spheres placed around a central sphere, 
while only one of them was found to reach 12 (the maximum value as predicted by Kepler [8]). 
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Figure 8: Relative frequencies of the different final coordination numbers 

 
It can be noted from Figure 8 that the relative frequency of the number of spheres needed to completely 
occupy the surface of an identical sized sphere follows a normal distribution with mean value = 7.57 and 
standard deviation = 0.77. It has been found that the relative frequency of coordination number also takes a 
normal distribution when the outer spheres are of different diameter to the central sphere but, even if 
considered by the authors an interesting point of discussion, this will not be referred to further in this paper 
for reasons of clarity and brevity. 
 
Of course, each final configuration of N spheres may also be considered as producing an intermediate 
configuration for each n < N spheres group, consisting in the right number of spheres in chronological order 
of deposition. For analytical convenience (discussed later) only assemblages having 5 or more spheres (i.e. 
4 or more placed around the central sphere) are considered in this paper. A 9-spheres configuration 
(coordination number = 8) will, then, produce one interim configuration for each of the 5, 6, 7 and 8 spheres 



groups considering, respectively, the first 4, 5, 6 and 7 placed spheres. The total number of configurations 
produced is, thereby, approximately 370000. 
 
This kind of configuration does not consider all those situations where a sphere is not touching the central 
one but is close enough to influence its Voronoi cell (Figure 9a is considered while Figure 9b should have 
been). 
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Non-touching sphere 
 
 
 
 
 
 

Figure 9: Influence of non-touching spheres on the Voronoi cell 
 
Investigating these configurations to find the link between solid ratio and coordination number is, therefore, 
useless for the purpose of predicting the properties of a spheres’ assembly, but nonetheless an analysis has 
been performed thinking that its results may find their applications in other research. From this point of view, 
the main result is given in Figure 10. 
 
Moreover, in this analysis is not possible to calculate the solid ratio for coordination numbers less than 4, as 
in those cases the Voronoi cell is “open” (there can’t be any solid with less than 4 faces), and this is why in 
Figure 10 the coordination numbers start from 4. As will be shown later in the results from the second 
method, in reality particles with coordination number less than 4 can still have a closed Voronoi cell because, 
being inside the assembly, they will be surrounded by other particles, even without being touched. 
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Figure 10: Stacked relative frequencies of coordination numbers against solid ratio (Method 1) 
 
Figure 10 is meant to be read in the following way: for a given solid ratio, a vertical line is divided by the chart 
in segments that are proportional to the relative frequency of each coordination number. For example, for a 
solid ratio of 0.25 the distribution of coordination numbers is summarized in Tab 2. 



 
 

Tab 2: Numerical example of Figure 10 for SR = 0.25 
Coordination 
number 

Relative 
frequency 

4 12% 
5 72% 
6 15% 
7 1% 

 
For each value of coordination number, the number of configurations produced is such that it is possible to 
derive a statistic of the outer spheres distribution on the central sphere’s surface. The volume of the Voronoi 
cell (Vv) formed can represent a measure of this distribution: a uniform configuration will have a lower Vv 
than a less uniform one. In particular, unstable configurations (that is where the Voronoi cell is open-ended – 
see Figure 11c) will have Vv = ∞. 
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Figure 11: Influence of the outer spheres’ distribution on Voronoi cell volume 
 
For example, with a coordination number of 6 the best distribution corresponds to the situation where the 
Voronoi cell is a cube (Figure 2 illustrates this while Figure 11 shows the variation, in a 2 dimensional sketch, 
of the increase of the Voronoi cell volume when four spheres are poorly distributed around the central 
sphere). The volume of this cube is also the minimum volume (Vvmin) that a Voronoi cell can have if formed 
by only 6 spheres. Any distribution of the 6 spheres which differs from this one will present a larger value of 
Vv, and this value will increase as the distribution gets less uniform. 
 
Based on these considerations, the concept of “contact distribution” (D) of a particle can be introduced by the 
following definition (2): 
 
D = Vvmin/Vv      (3) 
 
Obviously, Vvmin is a function of coordination number. The normalization of Vv by Vvmin makes this concept 
independent of a sphere’s radius (as this also affects the Voronoi cell volume) and from coordination 
number: a configuration of 4 spheres (or 4 contacts) uniformly distributed is, therefore, considered as well 
distributed as a configuration of 12 spheres uniformly distributed, being in both cases D = 1. 
 
Note that Vvmin for a coordination number of 3 is always ∞ (as there can not be any solid with less than 4 
faces) and it is for this reason, therefore, that only coordination numbers greater than 3 have been 
considered in this paper. Tab 3 shows the values of Vvmin that were found for the different coordination 
numbers and that were used for the subsequent analysis. 



 
 

Tab 3: Value of Vvmin for each coordination number (spheres’ radius = 1) 
Coordination 

number 
Obtained 

Vvmin 
4 13.91 
5 10.50 
6 8.12 
7 7.33 
8 6.75 
9 6.30 
10 6.02 
11 5.85 
12 5.56 

 
An analytical value of Vvmin can be found for those coordination numbers whose minimum Voronoi cell is a 
regular polyhedron, i.e. 4 (tetrahedron), 6 (cube) and 12 (dodecahedron). These analytical values can be 
calculated by equations (4), (5) and (6) and are given in Tab 4 [11]. 
 

Tab 4: Vvmin for regular polyhedra with central sphere radius of 1 
Coordination 

number 
Analytical 

Vvmin 
4 13.86 
6 8.00 
12 5.55 

 
θ = acos[(cosα- cosP

2
Pα) / sinP

2
Pα]      (4) 

 
s = ri * 2 * tan(π/n) / [(1-cosθ)/(1+cosθ)]P

½
P      (5) 

 
 Tetrahedron   Cube   Dodecahedron 
 
Volume =       2P

½
P * sP

3
P / 12       sP

3
P             (15+7*5½) * sP

3
P / 4 (6) 

 
where α is the plane angle between two consecutive sides, θ is the dihedral angle between two faces, n is 
the number of sides in each face, ri is the radius (ri = 1 in our case) and s is the side length. 
 
As can be seen comparing the data from Table 3 and Table 4, the minimum Voronoi cell volumes obtained 
are entirely consistent with the analytical results. In particular, they provide upper bound values of the 
analytical solutions, showing that all the configurations generated respect these minima. Therefore, it is 
reasonable to assume that this method is also indicating reliable values of the minimum Voronoi cell sizes 
when no analytical solution is available. 
 
Figure 12 shows the cumulative frequency of D (Equation 3) for each coordination number. For a given value 
of D, say D*, this chart shows the percentage of spheres with a given coordination number that were found 
to have D<D*. A numerical example is given in Tab 5. 
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: Cumulative frequencies of contact distribution (D) 

 Numerical example of Figure 12 for D = D* = 0.4 
Coordination 

number 
% of spheres 

with D<D* 
4 76 
5 27 
6 3 

ation number for an unstable particle (i.e. Vv = ∞ → D = 0) is 9. Consider a 
centred cubic, which has 6 spheres along an equator of the central sphere 
 a total coordination number of 12), it is possible to see that an open-ended 
cting the 3 top or bottom spheres, leaving a coordination number of 9. 
igure 12 that, in reality, unstable spheres are very unlikely to be generated 
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tion number, so 6 is the expected maximum number of spheres that can be 
ere yet leave the other open-ended such that Vv = ∞. The 7P

th
P sphere would 

opposite hemisphere and thus to stabilize the particle. 
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es, we are selecting 9 of them. The total number of ordered combinations of 

 has a probability of 



P (9/12 ordered) = (12-9)! / 12! 
 
The acceptable combinations are those comprising the first 9 elements placed, although they may be 
selected in any order. Their number is 
 
N (9/9 ordered) = 9! 
 
Therefore the probability for the first 9 spheres to be the ones we choose from a final placing of 12 around a 
central sphere is 
 
N (9/9 ordered) * P (9/12 ordered) = 9! * (12-9)! / 12! = 3! / (12*11*10) ≈ 0.0045 = 0.45% 
 
Finally, considering that we can choose the 9 spheres in 8 different ways, the indicated probability is then 
 
P (unstable) = 8 * 9! * (12-9)! / 12! = 8 * 3! / (12*11*10) ≈ 0.0364 = 3.64% 
 
Thus, this is the probability for a final 13-sphere group to produce an interim unstable 10-sphere group. For 
the reasons explained before, we can expect this percentage to be much lower when the coordination 
number is 11 and 10. Considering that these percentages must also be multiplied by the respective 
coordination number’s relative frequency, these observations fully explain the results shown in Tab 6. 
 

Tab 6: Number of unstable configurations for each coordination number 
Total number 

of spheres 
Coordination 

number 
Inspected 

Configurations
Unstable 

Configurations
% Instability 

4 3 80270 80270 100.00 Certain 
5 4 80270 41744 52.00 Possible 
6 5 80270 8317 10.36 Possible 
7 6 80270 313 0.39 Unlikely 
8 7 75094 1 0.00 Very unlikely 
9 8 42973 0 0.00 Very unlikely 
10 9 8027 0 0.00 Very unlikely 
11 10 265 0 0.00 Impossible 
12 11 12 0 0.00 Impossible 
13 12 1 0 0.00 Impossible 

TOTAL 367182  
 
Stated another way, it is reasonable to assume that an 8-sphere arrangement (a central sphere plus 7 
added) or a 9, 10, 11, 12 or 13-sphere arrangement is inherently stable. Moreover, 52% and 10% of all the 
possible configurations of particles with coordination numbers respectively of 4 and 5 are unstable, which 
means that, in an assembly subjected to external forces, they would not take part in the global mechanism. 
This aspect is of major importance when trying to relate aggregate mechanical properties to particle 
arrangement, and will, therefore, need further investigation than has been possible in this paper. 
 
 
Results from the second method 
The box-filling algorithm has been used gradually varying the parameter d in order to obtain different packing 
degrees as explained earlier in this paper. As can be seen from Figure 7, the linear increase of d does not 
lead to a linear increase in solid ratio. As d increases, solid ratio reaches its maximum after which it remains 
constant. The use of this algorithm brings, therefore, to an uneven distribution of solid ratios through the 
whole range, with the number of dense packings larger than the number of loose ones. To obtain a uniform 
set of data, i.e. a number of results regularly distributed, the results have been grouped by solid ratio and 
their coordination number frequencies have been averaged within each group (defined as the stated solid 
ratio ± 0.025). Figure 13 shows the resultant data. 
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Figure 13: Relative frequencies of coordination number for solid ratio from 0.20 to 0.60 

 
As already observed by M. Oda [6], who obtained similar curves by physical experimentation, these curves 
are very close to normal distributions, therefore is possible to describe them by means of their average value 
(AvCN) and standard deviation (StD). Figures 14 and 15 show these parameters for the distributions in 
Figure 13. 
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Figure 14: Average coordination number for solid ratio from 0.20 to 0.60 
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Figure 15: Coordination number’s standard deviation for solid ratio from 0.20 to 0.60 

 
The two sets of data present well-defined trends when plotted against solid ratio, therefore it is possible to 
suggest the two equations that fit them best ((7) and (8)) as suitable for the purpose of this research. 
 
AvCN = 8.6152*SR +1.0444      (7) 
 
StD = -4.3275*SR^2 +3.738*SR +0.3959      (8) 
 
Equations (7) and (8) have also been used to produce the chart in Figure 16, which should be read in the 
same way as Figure 10 for the first method. 
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Figure 16: Stacked relative frequencies of coordination number against solid ratio (Method 2) 
 
 



CONCLUSION 
 
The aim of the study presented in this paper was to investigate the properties of equal spheres assemblies 
from the geometric point of view as a pre-cursor to investigating effects of packing on aggregate properties. 
The understanding of spatial characteristics of single-size sphere arrangements is the fundamental part of a 
more general packing theory for unbound granular materials, which has been conceived to explain particles’ 
micro-mechanics. In particular, as evidenced by previous research, attention must be focused on particle 
coordination number, which is the number of contact points that each particle has with its neighbours. 
 
Two methods have been used to generate large numbers of random sphere configurations from which to 
derive statistical observations: random placement of spheres on an equal size sphere’s surface and random 
box filling with equal spheres. Basically, the first method only considered the relationship that occurs 
between one sphere and its touching neighbours, while the second one simulated large sphere assemblies 
analysing their global arrangements. Therefore, being two very different approaches, they have led to 
consideration of different aspects of the subject. 
 
As a first approach, an algorithm was developed that has proved to be suitable for generating a large 
number of configurations of spheres around a central one. The analysis of these results provided important 
information about the contact points’ distribution on the central particle surface. The concept of “contact 
distribution” (D) is introduced in equation (3) by means of the Voronoi cell volume. This parameter is suitable 
to describe the contact points’ dispersion and, therefore, its statistical distribution for the different 
coordination numbers has been analysed. The results obtained show that 52% and 10% of spheres with 
coordination numbers respectively of 4 and 5 were found to have an “unstable” contact points’ configuration 
(see Figure 12). They also reveal that unstable arrangements are only likely to appear with 7 or less spheres 
(coordination number ≤ 6), in line with a logical extension of Kepler’s observation. 
 
The second method has proved to be the best way to accomplish the main target of this study, i.e. to 
develop a tool to predict the distribution of coordination number as a function of packing degree in equal size 
sphere assemblies. The introduction of the parameter d in the algorithm allowed the investigation of the 
desired range of solid ratios. The results obtained prove that, for any solid ratio, the coordination number 
follows a normal distribution that can be predicted using equations (7) and (8) developed herein. 
 
Where analytical solutions of physical modelling results are available, we have shown that the work 
described delivers the same results. The advantage of this new approach is that the statistical variability has 
also been defined revealing the likelihood of the known solutions being realised in practice. 
 
Finally, it must be said that, aside from the main results, a number of interesting observations can be made 
that have not been fully developed in this paper for reasons of clarity. Due to the width of the topic, some of 
them may find a place in the authors’ future work about unbound granular materials mechanics, some others 
may be of interest for studies in powder mechanics, material science, etc. 
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