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Synopsis 
In this paper a bilevel programming model is presented for the resolution of the modal distribution in the 
charge provisioning of construction works in urban environments. The model is applied to the construction of 
the new port of Laredo where the modal distribution is optimized between trucks and barges, for different 
periods. 
The used methodology is based on the minimization of the total cost of the system that is composed by the 
cost of the operators of trucks, cost of the operators of barges and the cost of the drivers. The drivers will be 
increased their level of costs as consequence of the rising congestion induced by the flow of trucks 
circulating on the network. 
Therefore, we solved a problem of bilevel optimization, in which the upper-level corresponds to the total cost 
of the system, conformed by the three agents: operators of trucks, operators of barges and drivers, and in 
the lower-level it is considered a users equilibrium model (cars) that responds to the first principle of Wardrop 
(transformed of Beckman). The problem consists on determining the optimized frequency of trucks and of 
barges, in such a way that the total costs of the system are minimized.   
Additionally, environmental constrains are considered, as for the example the maximum level of flow in the 
links of the net, assuring that the flow of more trucks the flow of automobiles in the links is not superior to the 
critical value of flow, in reference to emission of pollutants. This way, 4 atmospheric pollutants and the levels 
of noise are analyzed. 
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The growing volume of transport is contributing to a bigger pressure on the environment. The measures 
adopted at the present time to mitigate this tendency, in the best of the cases, only reduce lightly the 
acceleration of the rate of growth. 
 
As positive aspect, to highlight that the technological progresses are allowing to reduce, in spite of the 
growing traffic volumes, the levels of atmospheric contamination generated by road transport. 
 
However, it is needed more to solve the problem of the atmospheric contamination and acoustics in the 
urban environment, both increased by the constant growth of the congestion in the traffic of the cities. In this 
scenario is where the environmental negative impacts generated by the transport are concentrate mostly. 
 
In this environment, the transport of travellers and the transport of goods in urban environments, besides the 
daily problems that suffer the cities, it is important to study a particular case: the problem that generates the 
transport of provisioning of materials to big infrastructural works that are developed inside the cities. 
 
This event type, in spite of its temporary character, affects to the environmental of the city in two ways. The 
first one, contributing to the growth of the traffic congestion for the automobile users, increasing the derived 
problems, so much of atmospheric contamination as acoustics, besides the consequent increment of the  
cost for the user by a bigger consumption of time in the realization of their daily trips. The other form is due 
to the own effect of contamination and noise generated by the heavy vehicles of supply to the work. 
 
This last type of environmental problems generated by the transport in the city constitutes the spine of this 
study. The objective will be to optimize the system of transport of provisioning of a great infrastructural work 
in urban environment (new port of Laredo), based on the minimization of total costs of the system, allowing 
to get a sustainable activity from the social, economic and half environmental perspective. 
 
Is important to emphasize that this model is framed for the urban environment. This comes motivated 
because, like is known, is in the city where more and in more grade the important problems generated by the 
transport are presented:  traffic congestion, atmospheric contamination, noise, etc.. Besides the above-
mentioned is necessary not forget that is in the cities where the whole human activity is concentrate and 
therefore where more urgent is to act in the reduction of the previous mentioned impacts. 
 
For big infrastructural works we understand each other those that hopelessly will cause considerable impacts 
on the transport and the mobility of the area where these works are located. It is therefore a relative term 
with two face concepts: volume of supply materials required by the work in front of transport possibilities. 
 
In definitive, the model proposed will give answer to three basic variables to organize a system of materials 
provisioning to the infrastructural work that is able to minimize the total system cost. 
 
The first considered variable is the mode or the transport operator. Will be defined which modes will 
intervene in the provisioning charge system to the infrastructural work. This characterization can be 
particularized per period, for example can contemplate the possibility that a marine transport mode (barge) 
alone is feasible of using in summery time. 
 
Later will value the routes, in those modes in which their vehicles circulate on the streets of the city 
(terrestrial modes), the frequencies of this transport modes are the most important variables to achieve the 
main objective of minimization of total system costs.  Also is possible to particularize  this information and 
define routes per period, for example can happen that doesn't interest to use a route determined in summery 
time by circulate next to a beach and if  to use  in winter. 
 



Lastly, will define the program of frequencies for each mode or operator and for modelling period considered. 
That is to say, the model will give as main output a complete calendar, for the total of duration of the work. In 
this program the optimal frequencies for the modes and routes previously preset  are determined in base of 
minimization of total system cost. 
 
In section 1 a brief introduction to bilevel optimization problem is presented. In section 2, the main 
operational characteristics of the system and the general methodology and variables used in the model are 
defined. In section 3 the production function is formulated. Section 4 defines the cost function. Section 5, 
specifies the bilevel programming model. The application and the main conclusions are presented in section 
6. 
 
INTRODUCTION TO BILEVEL PROGRAMMING 
 
The bilevel programming constitutes one of the most important areas in the global optimization. The 
programs of bilevel optimization (or programming of two levels) present specific properties, some related with 
their high grade of no-convexity and non non differentiation. This motivates that resolution is particularly 
difficult and a challenged of considerable interest. They are countless problems of practical application that 
take advantage of their own structure hierarchical to outline and solve formulations through bilevel 
programming. 
 
Is possible to define the bilevel programming like "a mathematical program that contains a problem of 
optimization in the restrictions". For the perfect understanding, is necessary to focus simultaneously from two 
points of view: on one hand, as logical extension of the mathematical programming, and for other, as 
generalization of a problem peculiar of the theory of games (Game of Stackelberg). 
 
In the Stackelberg’s equilibrium a player special denominated leader, that can know the reactions from the 
rest of players to his strategy, exists. The rest of players are denominated followers. The leader can choose 
his strategy inside a certain group, independently of the strategies of his followers, while each follower can 
choose a strategy inside a group of them parametrically for the election made by the leader. The strategy of 
a follower depends on the leader's strategy, and his utility also depends so much of the strategies of the 
other followers, like of the leader. 
 
Many problems of transport planning and urban transport networks design are formulated through a problem 
of Stackelberg’s equilibrium, because their hierarchical structure is adapted to reflect the process of takings 
of decisions. The system operators (leader) plan or design the transport system keeping in mind the 
behavior of the users (followers) before their decisions about administration policy or investment. In the 
superior level the costs (social, economic, environmental, etc.), derived of the operators policy  are 
minimized , while in the inferior level the behavior of the users is described in the transport system 
intervened. 
 
The mathematical formulation of Stackelberg's equilibrium games is known as mathematical programs with 
equilibrium restrictions (MPEC). A mathematical program with restrictions of equilibrium is a optimization 
model in which certain group of restrictions is defined by means of an inequality variation. 
 
In definitive, the general structure of a MPEC in a transport planning problem is:     

     
• Superior level. It defines the objective of the transport system planner.    
• Inferior level. It represents the behaviour of the users in the transport network by means 

of an equilibrium assignment problem. 
 
A problem of bilevel programming (BLP ), in their more general form, present the following formulation: 
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This way, x is designated by a variables vector of the first level and  by a variables vector of the second 

level. In a same way,  and 

y
( ) 0, ≤yxg ( ) 0, ≤yxh  represent the restrictions of the first (upper) and the 

second (lower) level. The function  is denominated objective function of the first level, as for ( yxF , ) ( )yxf ,  
is designated as objective function of the second level. 
 
One class of bilevel optimization problems more frequent in the literature is conform by the convex bilevel 
problems optimization. 
 
A  binivel optimization problem is said convex (BLPC) when , and when they are convex in 

the functions y  for all x in . 
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The main advantage of working with BLPC is that with an appropriate qualification of the restrictions, the 
lower level can be replaced by Karush-Kuhn-Tucker conditions (KKT), to obtain an equivalent mathematical 
problem of a single level. On this last aspect it is recommended to consult Bazaraa and Shetty (1979). 
 
The  more common particular cases of the BLPC problem that exists in the current literature,  are:     
     

• BLLP - lineal programs of  two levels in which all the implied functions are lineal.   
• BLLQP - lineal-quadratic programs of  two levels in the one which the functions and  are 

lineal and the objective function of the second level  is quadratic and strictly convex in .     
gF , h

f y
• BLQP - quadratic programs of  two levels in which the objective function of the first level is also 

quadratic (convex or not convex) 
 
Are several the applications described in the literature that  have been modeled through the bilevel 
programming. Among the applications more frequently, can be studied 
 

Application to  networks design, where this type of models is characterized to use in the inferior level 
the traffic assignment model formulated by means of the TAP. Concerning this type of  lineal bilevel 
programming  exist applications as in Ben-Ayed et all (1992), applications of networks design  
keeping in mind congestion effects on the network like in Marcotte (1986), diverse algorithms and 
heuristic implementations as in Marcotte (1988) and Marcotte and Marquis (1992) and no-lineal 
binivel programming  as in Suh and Kim (1992). 

 
Another type of habitual application is the problem of estimate the demand, like in Florian and Chem 
(1991) where a bilevel programming  is presented for estimate matrix O-D with traffic counts in some 
links. These models use data of traffic volumes, conforming a more economic information, in 
opposition of the expensive domicile survey. 
 
The problem of space localization is another frequent application of the bilevel programming. In 
Miller, Friesz and Tobin (1992) heuristic algorithms are presented for localization problems. 
 



The difficulty of these models is fundamentally its application to reality, due to big dimensions problems, of 
the order of several dozens of thousan. Also due to bad mathematical properties of the models, like  non-
differentiation and the non-convexity. This has made that the methodology developed to solve these 
problems is heuristic. 

 
DEFINITION OF THE SYSTEM AND GENERAL METHODOLOGY 
 
To solve the modal distribution in the charge provisioning to the development of the infrastructural works of 
the new port of Laredo we should define three variables of the system: transports modes have to use, routes 
in the modes that circulate on the network of the city and the calendar of frequencies of the vehicles, for the 
total duration of the work. 
 
The outlined model allows determining the vector of optimal frequencies that minimize the total cost of the 
system, therefore, the routes of operators of transport that circulate for the network and the considered 
modes are previous data to the execution of the model. 
 
Also, the demand of transport is fixed. This demand is the group of materials to transport that requires the 
development of the work. Habitually through the construction projects, to have the chronogram of 
development of the works. Therefore, it is possible to define an initial calendar of frequencies of vehicles 
based on the information of the project. Given the flexibility of the model is possible to determine the 
frequencies as the work is executed and to make modifications on the initial calendar. 
 
We have considered so many modelling periods like periods of different demand level (certain with the 
chronogram of works) in combination with the different defined periods of traffic. In the case of Laredo, 3 
periods of traffic have been determined: a period of winter, a period of summer and peak hour and a period 
of summer in off peak hour. 
 
The considered modes of transport, to find a solution to the problem of the optimal modal distribution, have 
been: trucks and barges. In this case, the trucks contribute flow to the network and therefore we should 
define the routes for where they will circulate. In the case of Laredo, and after an analysis of different 
possible routes, there are two possible routes for the trucks. 
 
Given this scenario, the outlined model is based on the minimization of the total cost of the system, made up 
of the cost of truck operators, barge operators and drivers, whose level of costs will increase as a result of 
higher congestion produced by truck traffic.  
 
In order to determine the optimal level of charge distribution between trucks and barges, the cost structure of 
both operators and the one of the users of the system are considered simultaneously. The optimal 
distribution will be that which minimizes the total cost of the system defined by the three agents described 
(trucks, barges and drivers).  
 
The methodological approach deals with solving a bi-level mathematical programming problem. At the upper 
level, a structure of total costs of the system, made up of the three relevant agents (truck operators, barge 
operators and drivers) is defined. Drivers are relevant here because their costs would increase as a result of 
the congestion produced by trucks. In the event of there being no congestion, the analysis would be carried 
out straight from the costs of both operators (trucks and barges), as drivers would not be affected. Moreover, 
a series of constrains are taken into account at the upper level, preventing the combined volume of cars and 
trucks not exceeding the limits of pollution emissions (PMB10B, CO, NOx and SOx) and noise pollution. 
 
On the other hand, an optimization problem is considered at the lower level, providing as a result a car 
assignment according to Wardrop’s first principle. However, truck traffic will affect the Wardrop’s equilibrium 
of the drivers implied in the congestion. 
 
In order to define the upper level’s objective function, it is necessary to determine analytic expressions for 
the costs of the three agents involved: truck operators, barge operators and drivers.  
 
As mentioned above, the total cost of the system is defined as the total of the operation cost of trucks, 
barges and drivers 
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where: 
 

cc  : average unit cost of operating a truck (€/hour). 
t

cf  : frequency of trucks during the modelling period t (trucks/hour). 
t

cT  : travel time of the truck, including return, plus times for loading and unloading (hours). 

bc  : average unit cost of operating a cargo barge (€/hour). 
t

bf  : frequency of barges during the modelling period t (cargo carriers/hour). 
t

bT  : travel time of the barge, including return, plus times for loading and unloading (hours). 

tF  : weighting factor representing the duration of each modelling period in the total time of the work 
completion. 

( )t
ca

t
vaa ffc ,, , : total cost of operation in the link a during the modelling period t (€/hour). 

t
vaf ,  : flow of vehicles in the link during the modelling period t (vehicles/hour). 

t
caf ,  : flow of trucks in the link during the modelling period t (lorries/hour). 
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PRODUCTION FUNCTION 
In order to transport a total charge ofQ during a specific period, it is feasible to transport  in a sub-period 
t, so that: 

tQ
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Charge  can be transported by truck or barge, and therefore: tQ
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In order to transport units during a t period with trucks with an average capacity of  , we will need the 

following frequency of trucks : 
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Analogously, in order to transport units during the t period with barges with an average capacity of , 

we will need the following frequency  : 
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Then, by substituting, from (11) and (12), in (10), we obtain: 
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Thus, we clearly observe the perfect substitution condition between trucks and barges. And, depending on 
the costs of each mode of transport and the impact that would be generated on drivers, how much to 
transport for each option should be determined. 
 

In (13), the demand of every period  is constant.  On the other hand, we suppose that the trucks and 

barges will go loaded until their capacity . Therefore the variables are the frequencies, of truck 
and barge. 

tQ
),( bc KK

 
COST FUNCTION 
For this case practical and once analyzed application the possible access routes by truck, two routes have 
been determined (see Figure 1). A first route by the more direct  access road   to the port but with high level 
of congestion. This has motivated define a second route, a little longer in distance and arrive to the port for 
the nearest streets to the beach. 
 

 
Figure 1. Routes for trucks. 

 
Since two possible circulation routes are valued for the trucks, the definitive function of costs of the system 
can be defined as follows: 
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In the previous function of costs it is possible to substitute the production function, this way we have: 
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where: 
 



cc  : average unit cost of operating a truck (€/hour). 
t

cf 1  : frequency of trucks, circulating in route 1, during the modelling period t (trucks/hour). 
t

cf 2  : frequency of trucks, circulating in route 2, during the modelling period t (trucks/hour). 
t

cT 1  : travel time of the truck, circulating in route 1, including return, plus times for loading and 
unloading (hours). 

t
cT 2  : travel time of the truck, circulating in route 2, including return, plus times for loading and 

unloading (hours). 

bc  : average unit cost of operating a cargo barge (€/hour). 
t

bT  : travel time of the barge, including return, plus times for loading and unloading (hours). 

tF  : weighting factor representing the duration of each modelling period in the total time of the work 
completion. 

( )t
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t
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t
vaa fffc 2,1,, ,, : total cost of operation in the link a during the modelling period t (€/hour). 

t
vaf ,  : flow of vehicles in the link during the modelling period t (vehicles/hour). 

t
caf 1,  : flow of trucks, circulating in route 1, in the link during the modelling period t (lorries/hour). 

t
caf 2,  : flow of trucks, circulating in route 2, in the link during the modelling period t (lorries/hour). 

 
 
Then, we must find a distribution which minimizes expression (15). Therefore, as truck transport increases, 
the cost of this mode increases and the cost of barges decreases (and vice versa). Moreover, if there is 
congestion, the costs for users will increase as the truck charge increases. 
 
To notice that given the perfectly substitute character of the production function, the only variables to 
determine are the frequencies of trucks, obtaining for complementarily the barge frequencies. 
 
In definitive, the number of variables to determine (frequencies) it will be the product of the number of routes 
considered for the trucks multiplied by the number of modelling periods considered. 
 
BI-LEVEL OPTIMIZATION PROBLEM 
Given the scenario outlined above, in order to determine the optimal distribution of charge between trucks 
and barges, the following bi-level optimization problem must be solved:  
 
Upper level: 
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            for all links of the network  (17) 
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Lower level: 
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The optimization problem considered at the lower level, providing as a result a car assignment according to 
Wardrop’s first principle. However, truck traffic will affect the Wardrop’s equilibrium of the drivers implied in 
the congestion (18). There are so many problems of optimization, at the lower level, as number of modelling 
periods considered. 
 
Additionally, the optimal charge distribution between the different studied alternative modes of transport 
(truck and barge), will keep in mind the environmental impact that will produce to add the heavy vehicles to 
the network. 
 
For each type of pollution emitted by the traffic of vehicles and trucks in the network, there is a constraint at 
the upper level of the optimization level (17). This constrains are taken into account at the upper level, 
preventing the combined volume of cars and trucks not exceeding the limits of pollution emissions: PM10 
(suspended particles), CO (monoxide of carbon), NOx (derived of the nitrogen), SOx (derived of the sulfur) 
and acoustic pollution. There are as many environmental restrictions as the product of number of links of the 
network and number of studied pollutants. 
 
APPLICATION AND CONCLUSIONS 
Finally, and such and like was shown previously, in reference to the material type to transport, the main 
group of provisioning material (see Figure 2 and Table 1): material of everything-one, selected stone and 
granulate filler , all considered important in the design of  the modal distribution in the charge provisioning 
between truck and barge with destination the works of the port of Laredo. 
 

 
Figure 2. Port of Laredo and future sport-fishing port. 

 



That is to say, a total of 1.150.000 mP

3
P to what it is necessary to add the necessary materials for the 

construction of the concrete blocks (almost 170.000 mP

3
P). 

 
Unit of Work Material Quantity 

mP

3
P material everything-one 510.000 mP

3
P 

mP

3
P selected stone 103.000 mP

3
P 

58.000 mP

3
P 

Dike breakwater 

mP

3
P granulate filler material 

mP

3
P selected stone 94.000 mP

3
P 

25.000 mP

3
P mP

3
P selected stone 

Dikes and jetties of the fishing port 

mP

3
P granulate filler material 190.000 mP

3
P 

57.000 mP

3
P mP

3
P selected stone 

mP

3
P selected stone 13.000 mP

3
P 

100.000 mP

3
P 

Dikes and jetties of the sport port 

mP

3
P granulate filler material 

TOTAL 1.150.000 mP

3
P 

Table 1. Quantity and material type for work unit. 
 
As for the traffic and based on the taken data and their later analysis, the existence of one pick hour  and 
one valley hour  is determined  in the period of summer, while in winter exists a medium hour when not 
having a clear distinction pick-valley (see Figure 3). 
 

Periodo Meses Horas 
Summer – pick hour 1 Jul y - 30 September 9:00 at 11:00, 14:00 at 16:00 and 19:00 

at 21:00 
Summer – valley hour 1 July - 30 September 00:00 at 9:00, 11:00 at 14:00, 16:00 a 

19:00 and 21:00 at 24:00 
Winter 1 October -  30 June 00:00 at 24:00 

Figure 3. Periods of traffic considered for the practical application in Laredo. 
 
Arrived to this point, it is feasible to combine the requirements of materials periods of supply to the work with 
the different traffic periods considered. This combination will determine those periods of modelling that 
should be considered in the model, periods with different quantities of material or different conditions of the 
traffic in the city.     
     
This way, the modelling periods are shown in the Table 2 and the Figure 4. 
 

Periodos Duración 
Periodo 1 Del 1 de Febrero de 2006 a 1 de Marzo de 2.006. 
Periodo 2 Del 1 de Marzo de 2006 a 1 de Julio de 2.006. 
Periodo 3 Del 1 de Julio de 2006 a 1 de Octubre de 2.006. Horas punta. 
Periodo 4 Del 1 de Julio de 2006 a 1 de Octubre de 2.006. Horas valle. 
Periodo 5 Del 1 de Octubre de 2006 a 1 de Marzo de 2.007. 

Table 2. Modelling periods for application. 

 
Figure 4. Modelling periods for application.. 



On the other hand, we have decided to take as means truck for the transport of materials, the truck of 20mP

3 

P375 CV and 25 tons.     
     
Since the material to transport have similar density, with a simple calculate is determined that the real 
capacity of the trucks is 13,25 mP

3
P.     

     
As for operation cost trucks, and being based on prices of principles of the year 2.005 for Cantabria, this is 
45 €/hora.     
     
The barge type to consider in this analysis will be a barge of 200 mP

3
P of capacity (appropriate size to work in 

the environment of the work) with a operation cost of 220 €/hora. 
 
Regarding the final times of cycle they are: 
 

 Route 1 for trucks Route 2 for trucks
Time from point of supply to entrance in Laredo 75 min. 75 min.
Time of interior route in Laredo 15 min. 16,8 min.
Times of charge and discharges 22,8 min. 22,8 min.
CYCLE TOTAL 3,13 hours 3,16 hours

 

 Route for barges 
Time from point of supply to shipment port 17,47 min. 
Time of shipment port to Laredo 225 min. 
Times of charge and discharges 103 min. 
CYCLE TOTAL 9,8 hours 
Table 3. Times of cycle for two alternatives of transport. 

 
As for the resolution algorithm and for the special characteristics of the problem, the solution methods used 
should not require differential calculations of the function objective. This situation forces to use solution 
methods that don't require of an analytic expression of the gradient of this function and therefore it is 
appealed to methods and algorithms of heuristic type. 
 
Inside these methods, we can find the algorithm of Hooke-Jeeves among whose advantages highlight that it 
doesn't demand any special attribute of the function objective. This algorithm has been used for the 
resolution of the problem of optimization. 
 
This algorithm was programmed ad hoc in Borland-Delphi (see Figure 5) and in combination with software of 
analysis of transport systems (used to solve the assignment of vehicles to the network) a solution was 
obtained that minimized the costs. 
 

 
Figure 5. Software created ad hoc for control of the algorithm of Hooke-Jeeves. 

 



 
To solve this problem of traffic assignment we use a potent software of transport systems modeling, 
ESTRAUS. Inside this wide computer package the module GENRED has been used for creation of network 
and the module ASIGNA to assign traffic private to the network. 
 
For the confirmation of the environmental restrictions a macro was programmed in Excel that calculated for 
all links of the network the concentration of pollutants and of noise. 
 
This evaluation is for the limit of concentration maximum per hour and yearly. In the Figure 6 one can see 
the methodology followed with the three participant software. 
 

 
Figure 5. Methodology followed with the three participant software. 

 
In the Table 4 we are shown the vector of frequencies, for the five periods and two routes of trucks, along the 
successive iterations, understanding for iteration completes every time that is assigned to the network the 
matrix of trips. 

 
Iteration  Period 1 Period 2 Period 3 Period 4 Period 5 

Route 1 3 trucks/hr 6 truck/hr 12 trucks/hr 12 trucks/hr 6 trucks/hr1 
Route 2 4 trucks/hr 6 trucks/hr 0 trucks/hr 0 trucks/hr 6 trucks/hr
Route 1 4 trucks/hr 7 trucks/hr 13 trucks/hr 13 trucks/hr 7 trucks/hr2 
Route 2 5 trucks/hr 7 trucks/hr 0 trucks/hr 0 trucks/hr 7 trucks/hr
Route 1 5 trucks/hr 8 trucks/hr 14 trucks/hr 14 trucks/hr 8 trucks/hr3 
Route 2 6 trucks/hr 8 trucks/hr 0 trucks/hr 0 trucks/hr 8 trucks/hr
Route 1 6 trucks/hr 9 trucks/hr 15 trucks/hr 15 trucks/hr 9 trucks/hr4 
Route 2 7 trucks/hr  8 trucks/hr 0 trucks/hr 0 trucks/hr 8 trucks/hr
Route 1 7 trucks/hr 10 trucks/hr 16 trucks/hr 16 trucks/hr 10 trucks/hr5 
Route 2 7 trucks/hr 8 trucks/hr 0 trucks/hr 0 trucks/hr 8 trucks/hr

  Fails environmentally 
Route 1 7 trucks/hr 9 truck./hr 15 trucks/hr 17 trucks/hr 9 trucks/hr6 
Route 2 7 trucks/hr 8 trucks/hr 0 trucks/hr 0 trucks/hr 8 trucks/hr
Route 1 7 trucks/hr 9 trucks/hr 15 trucks/hr 18 trucks/hr 9 trucks/hr7 
Route 2 7 trucks/hr 8 trucks/hr 0 trucks/hr 0 trucks/hr 8 trucks/hr

Table 4. Vectors of frequencies along the iterations until optimal solution. 
It is observed as leaving of a situation that represents 50% of transport in truck and 50% in barge, as  
change the values of the vector of frequencies these spread to grow, that is to say, increases the percentage 
of total transport in truck.     
     
This growth reflects perfectly as the barge cost  diminishes (every time is transported less in barge)  
increasing the cost of transport in truck and the cost on the user. 
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Figure 6. Evolution of means costs per hour until optimal solution. 

 
In the previous  Figure 6  can see as the algorithm in their evolution  goes improving iteration to iteration the 
means costs per hour, until the iteration 5 where  improves the cost but fail in the environmental restrictions.   
 
If we analyze the cause of fail environmentally in the iteration number 5, we observe that is in the period of 
winter where the problem is presented: in the route 1 when increasing from 9 trucks per hour to 10 truck per 
hour. This period in spite of having less traffic intensity is bigger duration and therefore that of more weight in 
the cost function to optimize. 
 
This  is confirmed when observing that the route  1  has a value of  frequency  superior  of 10 trucks per hour  
in other periods, even of high level of traffic, for example in the periods 3 and 4 with 15 trucks per hour 
(summer period). 
 
The optimal solution represents that 76% of total of material should be transported in truck and the rest by 
barge. 
 
In the Figure 7 the means costs per hour is represented (optimized value of the function objective) for all the 
possible charge combinations, from 0% until 100 % charge in truck. 
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Fails environmentally 
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Figure 7. Evolution of the means costs per hour from 0% to 100 % charge in truck. 
 

It is interesting to study some of the variations of the total cost attentively around the optimal solution, that is 
to say, carry out the analysis of sensibility.      



     
The Analysis of Sensibility (or  Post-optimalidad)  study how would affect to the  optimal solution obtained 
and the function objective the change (inside a predetermined range) of one of the parameters, maintaining 
fixed the remaining ones.      
     
In the first place we analyzed the variation of the total cost in function of the variation of each one of the 
variables (frequencies) considering fixed the other ones. 
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Figure 8. Change in function objective to diminish an unit the frequency. 

 
In the Figure 8 we graph the change taken place in the function objective as consequence of diminishing in 
an unit the frequency of certain period and certain route, maintaining the invariable rest of frequencies.     
     
If the previous analysis is carried out increasing an unit the frequency of the period and route in analysis, the 
results are those shown in the Figure 9     
     
In every period and for all the routes, diminishing or increasing a frequency, maintaining the invariable rest, 
is observed that the effect on the total cost is negative, that is to say,  doesn't improve the function objective,  
doesn't decrease the cost. This confirms that the solution is optimal for the study problem. 
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Figure 9. Change in function objective to increase an unit the frequency. 

 
Consequence of this analysis is feasible to carry out some interesting comment in reference to the previous 
figures:     



 
• The periods and routes that take null value of change in the function objective correspond with 

periods in those which, for the optimal solution, the total transport is carried out in truck and 
therefore  doesn't make sense value a positive increment of this frequencies.     

• In summery periods, in the pick traffic period (period 3) is more harmful to introduce a truck more 
than to diminish, while in the  valley traffic period  is worse to diminish an unit of frequency that  
increase it.    

• In reference to the previous point, notice that any modification is harmful, but   we can affirm that 
if we needs to introduce a truck in summer (for example motivated by an previous delays 
accumulation) should be in the hours valley.   

• If the previous analysis is centered in the periods of winter (periods 2 and 5), in all the cases, is 
most interesting introduce more number of trucks (if it was necessary) in the route 1 that in the 
route 2. 

 
Applying the analysis of sensibility to the operation unitary costs of trucks and barges, the results of the 
Figure 10 are obtained.     
     
We can observe as the effect of reducing in 0,1 euro the unitary cost of operation of the trucks is equivalent 
to a reduction of 0,75 euros in the barges.     
     
The points of court of the curve of "reduction costs in 0,1 euro in the operation of trucks" with the curves of 
the diverse reductions of cost of operation of barges,  determine the charge percentage in truck  starting 
from which is not interesting the transport barges and if in trucks. 
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Figure 10. Curves of means costs per hour in function of the% to transport in truck for diverse 

scenarios of operation unitary costs of trucks and barges. 
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