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Synopsis 
During the last few years, a lot of road-accident-predictive models have been developed by using Multiple 
Linear Regression and Poisson or Negative Binomial Distribution. More innovative methodologies based on 
fuzzy logic and neural networks have also been used. The application of these methodologies is not easy 
when a large number of variables is considered. Moreover, the influence of some variables on road 
accidents might not be equally significant. It would thus appears useful to have an analysis tool primarily in 
order to remove the redundant variables for accident-predictive models. Even if under-used in crash data, 
Principal Component Analysis (PCA) may be suitable for this purpose. PCA is a form of analysis used for 
extracting a reduced number of factors, called principal components, from a set of original variables, 
discarding as little of the information as possible. 
Our objective is to verify PCA potentiality for removing redundant variables in accident analysis. For this 
purpose a five-year monitoring period was carried out on a four-lane median divided road.  A database was 
subsequently created with the surveys regarding the type and number of accidents, traffic flow,  horizontal 
and vertical alignment, sight distances and pavement surface characteristics. PCA was applied to 
homogeneous sections having constant horizontal curvature, separated into tangents and curves. By means 
of the correlation matrix the results indicate that the number of accidents on curves increases with the length 
(L) of the homogeneous sections, the curvature radius (1/R), the average daily traffic (TGM) and the design 
speed change (∆V) between tangents and curves; whereas there is a negative correlation between these 
crashes and the longitudinal slope (i%), the sight distance (vis) and the pavement friction defined in terms of 
CAT (Side Friction Coefficient measured by means of a SCRIM equipment). Thus the results obtained prove 
the knowledges about this subject. Six principal components were found to account for about 90% of the 
variance in the original eight variables. The multiple correlation coefficient (ρP

2
P) between the original variables 

and the principal axes shows that the least significant variable is ∆V. In keeping with the literature, the 
correlation matrix for tangents indicates that road accidents are positively correlated to the length of the 
homogeneous sections (L) and the average daily traffic (TGM), and negatively correlated to the pavement 
friction (CAT) and the longitudinal slope (i%). Four principal components were found to account for over 90% 
of the variance in the original five variables. The multiple correlation coefficient for tangents (ρP

2
P) shows that 

the variables examined are all equally significant. 
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Road safety depends mainly on the relationship among the following three components, namely the human 
factor (speed, perception of road characteristics, driving behavior and psycophysical capabilities), the vehicle 
(performance and tyre-road interaction), and the environment (horizontal and vertical alignment, sight 
distance, pavement surface conditions, weather conditions, safety barriers, signals, lighting, traffic flow). 
Many studies have analysed these parameters with the purpose of identifying the combination that most 
affects accidents. 
Evaluating the combined action of these three components (human factor-vehicle-environment) is most 
complicated, especially on account of the difficulty in finding sufficient data about the first two parameters. 
However, in road engineering, a relationship between road safety and environment is more significant. 
During the last few years, a lot of accident-predictive models relating to traffic flow, infrastructure geometry, 
pavement surface and weather conditions have been developed by using multiple linear regression and 
Poisson or Negative Binomial distribution. More innovative methodologies based on fuzzy logic and neural 
networks have also been used. Many researchers have refined these models showing their operating limits 
and revealing questions that are still open. However, these models were developed in foreign countries 
where accident surveys, human behavior, infrastructure and traffic characteristics differ from those in Italy. 
They also refer to two–lane rural roads, while four–lane median divided roads have been investigated to a 
lesser degree. Moreover, no model considers all the variables affecting accidents both on account of the  
difficulty in managing a lot of data and also because some of these are less significant. Therefore we need 
an analysis tool to verify primarily that all the original variables affect accidents, or disregard redundant ones 
in looking for accident-predictive models. With regard to this problem, it is becoming ever more 
acknowledged that the technique of principal component analysis (PCA) appears to offer an appropriate 
approach for identifying the main variables that cause accidents. 
Such is the context wherein the present work is set. This paper studies crashes occurring in our country 
(Italy) on four–lane median divided roads, as a function of traffic flow, infrastructure characteristics, 
pavement surface conditions and sight distance. The objective is to identify the most significant variables 
affecting road accidents. For this purpose, a five-year monitoring period was carried out on a specific 
infrastructure. The database contains homogeneous sections, having horizontal constant curvature, divided 
into tangents and curves. Accidents, sight distance, longitudinal slope, design speed difference between 
consecutive elements (∆V), pavement friction (CAT) and traffic flow (TGM) were associated with these 
homogeneous sections. To understand the correlation structure of the variables and to remove unnecessary 
redundancy from the original set of variables so that we might interpret the results accurately, principal 
component analysis (PCA) was performed. PCA was applied to extract a reduced number of variables 
(called principal components), which are a linear combination of original variables, discarding as little of the 
information as possible. The interest in this approach was due to the need to verify the potentiality of this 
analysis tool and to address the choice of variables for predictive models more appropriately. 
 
 
STUDY METHODOLOGY 
Our analysis method involved several steps. First, the study started by monitoring a rural motorway. This 
infrastructure, which is a four-lane median divided road, is 51.6 km long. The horizontal alignment contains 
tangents and circular curves without transition curves. The vertical alignment consists of gradients and 
circular curves. Monitoring was conducted between the years 1998 and 2003, during which time accident 
data, pavement friction and traffic flow were collected. We possess 1916 observed accidents, 1320 of which 
were crashes occurring on tangents and 596 on curves. Thus, the number of accidents on tangents was 
twice that occurring on curves. The data base does not cover accidents that took place at junctions, service 
areas, tollbooths and hard shoulders since such accidents are not due to traffic flow and infrastructure 
characteristics. The database was organized for each carriageway in function of homogeneous sections with 
constant horizontal curvature, divided into tangents and curves. The number of accidents per year, section 
length (L), curvature radius (1/R ≠ 0 only for curves), longitudinal slope (i%), average daily traffic (TGM), 
sight distance (vis) on curves, pavement friction (CAT), and design speed difference (∆V) between tangent 
and curve were associated with every homogeneous sections. Thus the number of accidents per year and 
carriageway occurring on these homogeneous sections represents the dependent variable that could be 
related both to the traffic flow and environmental conditions for accident predictive models. 

 



Since the objective of the successive step is to find the most significant variables both for tangents and 
curves, principal component analysis (PCA) was duly performed. 
First of all, the variables examined were standardised to overcome the different unit of measurement of the 
original variables obtaining the Z matrix: 
 

( ) jjijij sxxz /−=       for i = 1,2,...,n   and    j = 1,2,...,q 
 
where jx and  are, respectively, mean and standard deviation of the generic variable xBjB. The elements in 
Z matrix have zero mean and unit variance. The covariance between two variables zBkB e zBj B(for k ≠ j = 
1,2,...,n) is the correlation coefficient.  

js

Next the covariance matrix (R) was computed, which contains the correlations between the original 
variables: 
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where Z’ is given by the matrix transpose of Z.  
From the so-called characteristic equation of the covariance matrix: 
 

( ) 0det =− IR λ  
 
where I is the identity matrix containing unit values, the eigenvalues λBhB were calculated. 
The variance accounted for by the principal components were computed with the eigenvalues λBhB.  
The eigenvectors vBh BwereB Bidentified by means of the matricial equation: 
 
( ) 0=− hh vIR λ  
 
in addition, the S matrix was determined, which contains the correlation coefficients between the original 
variables and the principal axes: 
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where V is the matrix of the eigenvectors and L is the diagonal matrix whose elements are the eigenvalues. 
Next the principal components were rotated by the quartimax method in order to assist in interpreting the 
results. 
This method permits the maximizing of the sum of the fourth power of elements contained in U, which is: 
 

STU =  
 
where T is the rotation matrix. 
The multiple correlation coefficients (ρP

2
P) between original variables and rotated principal axes were 

computed as the addition of the square of the elements for each row contained in U. Higher ρP

2
P are 

associated with the most significant original variables. 
Finally the results obtained were plotted and compared by means of the correlation circle. The objective of 
this last step was to understand more clearly the correlations between the original variables and the rotated 
principal axes. When the points representing the original variables are closer to the principal axes as well as 
to the circumference a high correlation is shown. Furthermore, if the original variables are closer to each 
other a close correlation between these variables is revealed. 
 
 
RESULTS 
The PCA results are summarized in this paragraph. The analysis was carried out distinctly for curves and 
tangents  to show the separate role they play on crashes. 
 
Curves 
The matrix X of original variables was obtained by using data from the monitored infrastructure, which  
contains: the number of accidents per year and carriageway (n.acc./year*carr) occurring on curves, the 

 



length (L) of curves, the curvature radius (1/R), the average daily traffic (TGM), the pavement friction (CAT), 
the longitudinal slope (i%), the sight distance (vis) and the design speed difference (∆V) between tangent 
and curve. In order to overcome the different unit of measurement of the original variables, the standardised 
matrix (Z) was computed. Then the covariance matrix (R) presented in Table 1 was derived: 
 

Table 1: Covariance Matrix (R) for Curves 

 n.acc./year*carr L 1/R TGM*10P

-4
P CAT i (%) vis ∆V 

n.acc./year*carr 1 0.23 0.10 0.15 -0.08 -0.05 -0.06 0.04 
L 0.23 1 -0.27 0.09 0.05 -0.01 0.13 0.21 

1/R 0.10 -0.27 1 -0.43 -0.08 -0.01 -0.35 -0.63 
TGM*10P

-4
P 0.15 0.09 -0.43 1 -0.15 0.00 0.15 0.32 

CAT -0.08 0.05 -0.08 -0.15 1 -0.05 0.09 0.04 
I (%) -0.05 -0.01 -0.01 0.00 -0.05 1 -0.04 -0.05 
vis -0.06 0.13 -0.35 0.15 0.09 -0.04 1 0.23 
∆V 0.04 0.21 -0.63 0.32 0.04 -0.05 0.23 1 

 
 
The covariance matrix coincides with the correlation matrix as the variables are standardised. The diagonal 
contains unit elements that represent the correlations of each variable with itself. The remaining elements 
are the correlations between the different variables: positive values indicate a direct proportionality between 
variables, and negative values show an inverse relationship between them. In the first column of Table 1, a 
positive relationship is observed between the number of accidents (n.acc./year*carr) and: the length (L) of 
curves, the curvature radius (1/R), the average daily traffic (TGM) and the design speed difference (∆V). 
These crashes are, in contrast, negatively related to the pavement friction (CAT), longitudinal slope (i%) and 
sight distance (vis). The results obtained confirm our knowledge with regard to the way in which the number 
of accidents on curves increases or decreases in accordance with the variables examined.  
By using the above-mentioned characteristic equation of the covariance matrix, the eigenvalues λBh Bwere 
found. Then  the eigenvectors vBh BwereB Bcalculated  by means of the relative matricial equation. Finally both 
the S matrix and U (rotated matrix of S) were computed.  
Table 2 contains the calculated eigenvalues λBhB, the variance accounted for (λBhB/Σ λBhB) and the cumulative 
percentage of the variance accounted for (Σ (λBhB/Σ λBhB * 100)). 

 

Table 2: Eigenvalues λBhB, variance accounted for (λBh,B/Σ λBhB ), cumulative percentage of variance 
accounted for (Σ (λBhB/Σ λBhB * 100)) and multiple correlation coefficients (ρP

2
P) between original variables 

and rotated principal axes for curves 

 λBhB 

(λBhB/Σ λBhB

) Σ (λBhB/Σ λBhB * 100)   uB1B uB2B uB3B uB4B uB5B uB6B ρP

2
P 

λB1B 2.222 27.77 28 %  n.acc./ 
year*carr 0.105 0.352 -0.270 -0.091 -0.039 -0.848 0.94

λB2B 1.256 15.70 43 %  L -0.265 -0.067 -0.839 -0.119 0.228 -0.165 0.87
λB3B 1.115 13.94 57 %  1/R 0.881 0.028 0.031 -0.040 -0.194 -0.072 0.82
λB4B 0.984 12.30 70 %  TGM*10-4 -0.603 0.501 0.247 0.089 -0.012 -0.304 0.78
λB5B 0.800 10.00 80 %  CAT -0.105 -0.883 0.175 0.035 0.043 -0.399 0.98
λB6B 0.740 9.25 89 %  i (%) 0.024 0.027 -0.176 0.979 -0.067 0.036 1.00
λB7B 0.584 7.30 96 %  Vis -0.221 0.009 0.234 0.024 0.943 0.026 0.99
λB8B 0.300 3.75 100 %  ∆V -0.845 -0.009 -0.085 -0.083 0.008 -0.018 0.73
 
 
Six principal components were found to account for about 90% of the variance in the original eight variables. 
The so-called “loading factors” (elements of the U matrix ), which represent the correlation coefficients 
between the original variables and the rotated principal axes, are also listed in Table 2. 
The multiple correlation coefficients (ρP

2
P) between the original variables and the six rotated principal axes are 

to be found in the last column. The ρP

2 
Pvalues are between 0.73 and 1.00. The lowest multiple correlation 

coefficient is associated with variable ∆V. Therefore this last one is the least significant variable affecting 
accidents on multilane roads, and may be ignored when finding predictive models. The redundancy of ∆V 
appears be due to the great influence on accidents of the variable 1/R to which ∆V is linked. 

 



Figure 1 presents the original variables in the plane of the first two principal components that make a greater 
contribution to the variance accounted for. 
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Figure 1: Graphical representation of the original variables on the principal plane and correlation 

circle for curves 

 
Both the curvature radius (1/R) and the design speed difference (∆V) are closely correlated to the first 
principal axis. A lower correlation between this axis and the length (L) of curves, the sight distance (vis) and 
the longitudinal slope (i%) is instead shown. The variables L and vis are closer to each other, and a close 
correlation between these ones is registered. 
The number of accidents on curves (n.acc./year*carr) and the pavement friction (CAT) are closely correlated 
to the second principal axis. A less close correlation exists with the average daily traffic (TGM). 
Thus the geometric variables appear to be represented by the first principal axis, while the remaining ones 
by the second principal axis. 
 
 
 
Tangents 
The matrix X of the original variables contains the following: the number of accidents per year and 
carriageway (n.acc./year*carr) which occurred on tangents, the length (L) of tangents, the average daily 
traffic (TGM), the pavement friction (CAT) and the longitudinal slope (i%). 
The standardised matrix (Z) and the covariance matrix (R) were calculated. The elements of the matrix R are 
contained in Table 3. 

 

Table 3: Covariance Matrix (R) for Tangents 

 n.acc./year*carr L TGM*10P

-

4
P 

CAT i (%) 

n.acc./year*carr 1 0.56 0.35 -0.07 -0.05 
L 0.55 1 0.11 0.11 0.00 

TGM*10P

-4
P 0.32 0.10 1 -0.17 -0.01 

CAT -0.08 0.07 -0.26 1 -0.02 
i (%) -0.02 0.01 0.00 -0.07 1 

 
 
In the first column of Table 3, a positive relationship is shown between the number of accidents 
(n.acc./year*carr) and the length (L) of tangents and average daily traffic (TGM). Accidents, in contrast, 

 



correlate negatively to the pavement friction (CAT) and longitudinal slope (i%). In keeping with the literature, 
the results confirm the trend of accidents with these variables. 
Table 4 contains the calculated eigenvalues λBhB, the variance accounted for (λBh,B/Σ λBhB ) and the cumulative 
percentage of the variance accounted for (Σ (λBhB/Σ λBhB * 100)). 

Table 4: Eigenvalues λBhB, variance accounted for (λBhB/Σ λBhB), cumulative percentage of  variance 
accounted for (Σ (λBhB/Σ λBhB * 100)) and multiple correlation coefficients (ρP

2
P) between the original 

variables and rotated principal axes for tangents 

 λBhB (λBhB/Σ λBhB) Σ (λBhB/Σ λBhB * 100)   uB1B uB2B uB3B uB4B ρP

2
P 

λB1B 1.711 34.19 34 %  n.acc./year*carr -0.854 -0.194 0.028 -0.135 0.79 
λB2B 1.183 23.64 58 %  L -0.903 0.167 -0.043 0.040 0.85 
λB3B 0.999 19.96 78 %  TGM*10P

-4
P -0.213 -0.710 0.008 -0.663 0.99 

λB4B 0.722 14.43 92 %  CAT 0.003 0.819 0.027 -0.566 0.99 
λB5B 0.389 7.77 100 %  i (%) 0.029 -0.019 -0.999 0.007 1.00 
 
Four principal components were found to account for 92% of the variance in the original five variables. 
The “loading factors” (correlation coefficients between the original variables and the rotated principal axes) 
are also reported in Table 4. 
The multiple correlation coefficients (ρP

2
P) between the original variables and the four rotated principal axes 

are in the last column. The ρP

2 
Pvalues are contained between 0.79 and 1.00. In this case all variables are 

significant because of the higher values of  this parameter. 
Figure 2 presents the original variables in the plane of the first two principal components that give the higher 
contribution to the variance accounted for. 
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Figure 2: Graphical representation of the original variables on the principal plane and correlation 

circle for tangents 

 
The number of accidents on tangents (n.acc./year*carr) and the length (L) of tangents are closely correlated 
with the first principal axis, whereas there is a lower correlation between this axis and the longitudinal slope 
(i%). Furthermore, the number of accidents and the length of tangents  are closer to each other, and also a 
close correlation between these variables is shown. 
The pavement friction (CAT) and the average daily traffic (TGM) have a close correlation with  the second 
principal axis. 
As already seen, the geometric variables are represented by the first principal axis, while the remaining ones  
by the second principal axis. 
 
CONCLUSION 

 



The objective of this paper is to remove unnecessary redundancy in accident analysis in order to better 
address the choice of the most significant variables for predictive models. 
Considerable progress has been made in recent years in techniques for establishing the relationships 
between accidents, traffic flow and road geometry. It has been generally acknowledged that the use of the 
Negative Binomial distribution is more appropriate than the Poisson distribution or conventional multiple 
linear regression. 
More innovative methodologies such as fuzzy logic and neural network have also been used. The application 
of the approaches mentioned is not easy when a large number of variables is considered. Moreover, the 
influence of certain variables on road accidents might not be equally significant. Principal Component 
Analysis (PCA), even if underused in crash data, is now being considered as a suitable tool for verifying 
primarily whether all variables affect accidents or disregard redundant ones.  
In using crash data of a monitored four-lane divided road, PCA has been successfully applied in this work. 
The results of the analysis carried out distinctly for curves and tangents prove the knowledges on this 
subject.  
For curves, the correlation matrix reveals that the number of accidents per year and carriageway  
(n.acc./year*carr) occurring on them increases with: the length (L) of curves, the curvature radius (1/R), the 
average daily traffic (TGM) and the design speed difference (∆V) between tangents and curves. These 
accidents decrease, in contrast, with the pavement friction (CAT), longitudinal slope (i%) and sight distance 
(vis). Six principal components were found to account for about 90% of the variance in the original eight 
variables. The multiple correlation coefficients (ρP

2
P) between the original variables and the six rotated 

principal axes were computed to be between 0.73 and 1.0. The ∆V, having the lowest ρP

2
P, was identified as 

the least significant variable and may be ignored when looking for predictive models. 
For tangents, the correlation matrix shows that the number of accidents per year and carriageway  
(n.acc./year*carr) on them increases with the length (L) of tangents and average daily traffic (TGM).  The 
number of accidents decreases with the pavement friction (CAT) and longitudinal slope (i%). Four principal 
components were found to account for over 90% of the variance in the original five variables. The multiple 
correlation coefficients (ρP

2
P ) was computed between 0.79 and 1.00. The higher values of ρP

2
P found for 

tangents indicate that  the five examined original variables are all significant. 
Although the results indicate that, for the case studied herein, only one variable may be ignored out of the 
set of eight original variables, we believe that we have demonstrated that the use of PCA is appropriate for 
removing redundant variables in accident analysis. Thus, it is hoped that in the future researchers will show 
greater interest in this methodology. 
 
REFERENCES 
ABDEL-ATY, M.A., RADWAN, A.E. (2000), “Modeling Traffic Accident Occurrence and Involvement”, 
Accident Analysis and Prevention, volume 32, issue 5, pp. 633-642. 
CALIENDO, C., LAMBERTI, R. (2001), “Relationship Between Accident and Geometric Characteristics for 
four Lanes Median Separated Roads”, Proceedings of the 12P

th
P International Conference on Three 

Continents, Moscow, 19-21 September. 
CALIENDO, C., PARISI, A., VILLANI, P. (2003), “Analisi dell’incidentalità sulle strade a carreggiate separate 
in relazione alle caratteristiche dell’infrastruttura e dell’intensità di pioggia”, XIII National Conference S.I.I.V, 
Padova 30-31 October 2003. 
GOLOB, T.F., RECKER, W.W. (2003), “Relationship Among Urban Freeway Accidents, Traffic Flow, 
Weather, and Lighting Conditions”, Journal of Transportation Engineering, volume 129, No. 4, July 1, pp. 
342-353. 
GOLOB, T.F., RECKER, W.W., ALVAREZ, V.M. (2004), “Tool to Evaluate Safety Effects of Changes in 
Freeway Traffic Flow”, Journal of Transportation Engineering, volume 130, No. 2, March 1, pp. 222-230. 
GOLOB, T.F., RECKER, W.W., ALVAREZ, V.M. (2004), “Freeway Safety as a Function of Traffic Flow”, 
Accident Analysis and Prevention, volume 36, issue 6, pp. 933-946. 
KENDALL, M.G., STUART, A. (1968), The Advanced Theory of Statistics, Charles Griffin & Company 
Limited, London. 
MARDIA, K.V., KENT, J.T., BIBBY, J.M. (1979), Multivariate Analysis, Academic Press, London. 
MENSAH, A., HAUER, E. (1998), “Two Problems of Averaging Arising in the Estimation of the Relationship 
Between Accidents and Traffic Flow”, Transportation Research Record 1635, pp.37-43. 
PERSAUD, B., DZBIK, L. (1993), “Accident Prediction Models for Freeway”, Transportation Research 
Record 1401, pp.55-60. 
PERSAUD, B., RETTING, RA., LYON, C.  (2000), “Guidelines for Identification of Hazardous Highway 
Curves”, Transportation Research Record 1717, pp.14-18. 
WILEY, J. & S. (1984), Handbook of Applicable Mathematics, Lloyd Emlyn, New York. 

 


	Principal Component Analysis Applied to Crash Data on Multil
	Synopsis

	Principal Component Analysis Applied to Crash Data on Multil
	STUDY METHODOLOGY
	RESULTS
	Curves
	Tangents





