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Synopsis 
This paper presents criteria to evaluate roundabout performance reliability. After introducing and justifying 
the adoption of reserve of capacity and rate of capacity as performance functions, the discussion is 
developed using a general calculation criterion in which the values that are involved in the limit state service 
condition – traffic demand and entry capacity – are random variables described by their probability density 
functions, that is to say by their distribution functions.  
A lower level criteria is then identified with which, on the basis of the estimation of suitable statistics of the 
performance function, a reliability index is calculated that can be compared to a prefixed reference value. 
Using a set of numerical applications performed on the basis of the adoption of some of the methods for 
capacity calculation that are more largely used in the technical practice, the criteria elaborated are concretely 
exemplified. 
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INTRODUCTION 
A roundabout is a particular at grade intersection that consists of a central area (known as central island) 
surrounded by a circle (known as circulatory roadway) that accommodates one-way counter clockwise traffic 
coming from some legs. 
Although adopted as a measure to improve circulation for the first time in France at the beginning of the 20P

th
P 

century, roundabouts have become largely and rapidly popular in Great Britain where left driving with priority-
to-the-right (that is, to the traffic in the circulatory roadway) has favored their good performance even with 
high traffic volumes. 
In the 1980s, an innovative decision was taken in Europe: the circulation rule was changed and priority was 
given to the flow in the circulatory roadway as regards to entering vehicles ( known as "priority-to-the-circle" 
rule or as "off-side" priority). 
Thus, it was possible to obtain an increase in the total capacity of the intersection in spite of the reduction of 
its dimensions, with an increase in the safety level due to speed reduction. For these reasons, since the 
1980s a great deal of roundabouts have been constructed in numerous Countries (besides England, in 
France, Germany, Switzerland, Holland, Scandinavian Countries, and, a little later, in Italy and in the USA). 
Overlooking the geometric dimensions that are currently easily available (FEDERAL HIGHWAY 
ADMINISTRATION, 2000), the evolution of the criteria related to performance aspects, which are of interest 
in this paper, is briefly reported. 
At the beginning, roundabouts were designed as a series of exchange areas situated along the sections of 
the circle between two consecutive legs that were assimilated to typical exchange areas: this procedure led 
to very big roundabouts and it hindered their diffusion.  
The change of the circulation rule made it possible to interpret the performance, in spite of the presence of 
exchange maneuvers, as a series of particular T intersections with “off-side” priority.  
The evaluation of the maximum number of vehicles at a given period of time (generally, one hour) that can 
enter from a certain leg (simple capacity) has been the object of numerous theoretical, experimental and 
simulation studies. 
A total capacity can also be defined: it is the sum of the entering flow values from each leg, when these flows 
are simultaneously the capacity ones.  
Capacity formulations that are available (see next paragraph “Reliability evaluation procedures”) today can 
be classified into three types as follows: 
(1) the configuration is characterized only by the number of lanes at the entries and on the circulatory 
roadway (SETRA/CSTR,1987); 
(2) the roundabout geometric layout  is taken into account in a more or less detailed way (KIMBER R.M., 
1980);  
(3) the users’ behavior through the psychotechnical times TBcB (critical gap) e TBsB (follow-up time) is taken into 
account (T.R.B., 2000) (WU N., 1997). 
Nowadays these procedures are also largely adopted in textbook (ESPOSITO T., MAURO R., 2003). 
Currently, in the field of current design procedures, the capacity formulations are implemented using as input 
the traffic flows related to suitable levels of traffic demand. 
These flows, that is, coincide with a pre-established rush hour. 
This procedure does not take into account random variations in these flows due to the nature of the 
circulatory phenomenon or to the lack of information about the flows.  
It follows that the determination of the entry capacities – which represent the output of the calculation 
procedures – that are obtained are only mean values of probability distributions. 
With the procedure presented in this paper it is instead possible to take into account random variations in 
traffic demand and to obtain the probabilistic characterization of the capacities of the roundabout entries, 
which are calculated through the capacity formulations. 
This makes it possible to evaluate roundabout performance reliability. 
 
 
RELIABILITY AND PERFORMANCE FUNCTIONS 
 
Consider a roundabout entry of capacity C, interested by an entering traffic demand QBe.B 

To evaluate the reliability – intended as the value “Z” of the suitability of a system to perform its function – it 
is natural to compare the values C and QBeB. 
The “Z” value, that is to say “performance function”, can be measured both with the difference C-QBe, Band with 
the ratioB BC/QBe, Bwhich in the reliability theory terminology (KOTTEGODA N., ROSSO R., 1997) are indicated 



as reliability margin and reliability factor respectively: 
eQCZ −=   (1) 

eC/QZ =   (2) 
Eq.(1) and Eq.(2) are connected to the two most widely adopted roundabout capacity indexes used to 
characterize service conditions: in fact, Eq.(1) coincides with the reserve of capacity (RC), whereas Eq.(2) is 
the reciprocal of the rate of capacity when it is expressed in absolute terms. 
Therefore, once prefixed two given minimum values zBminB and  for the reliability margin and reliability 
factor, the reliability condition of the system can be written: 

'
minz

mine zQCZ >−=   (3) 
'
mine zC/QZ >=   (4) 

In particular, in the former value the limit zBminB= 0  can be taken and in the latter , so that the success 
condition is represented by  

1z'min =

0QC e >−  (5) 
1C/Qe >   (6) 

The complementary relations of Eq.(5) and Eq.(6) represent failure conditions: 
0QC e <−   (7) 

1C/Qe <   (8) 
What has been expounded so far is the deterministic position of the problem. 
In reality, because of the random nature of the factors and relations on which traffic capacity and traffic 
demand values depend, the previous values C and QBe Bcan vary randomly. 
Therefore, considering C and QBe Bas random variables described by given probability laws or by adequate 
statistics, the above-mentioned relations must be suitably modified to take into account this circumstance. 
In particular, the values “Z” that are yielded by Eq.(1) and by Eq.(2) are also to be considered, insofar as they 
are random variable functions, as random values.  
Also, it should be considered that each entering traffic demand value QBe Bat an entry of capacity C 
corresponds to a reliability value determination. 
Assume, then, in the more general case, that the probability law of the random variable “Z” (see Eq.(1) and 
Eq.(2)) can be represented by the probability density function, p.d.f.,) fBZB (see Figure 1). 
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Figure 1: p.d.f. examples of the performance function (random variable Z) 

 

On the basis of PBZ BprobabilityB,  Bthe fractilesB  BzBminB  and 
can be determined: this equals to let '

minz
{ } )(zFzQCZPP minZmineZ =≤−==   (9) 

{ } )(zFzC/QZPP '
Z

'
eZ minmin

=≤==   (10) 
where FBZB(Z)  are the distribution functions (c.d.f.) of the random variable “Z” in these two cases, Z=C-QBeB e 
Z= C/QBeB. 
PBZB is then the probability of the event {entry unreliability}, given that zBminB and  are minimum values 
prefixed by the reliability value. 

'
minz

The complimentary event {entry reliability} obviously results in 
{ } )(zF1zQCZPP-1 minZmineZ −=>−==   (11) 

{ } )(zF1zC/QZPP-1 '
Z

'
eZ minmin

−=>==   (12) 
The “failure” event and the complementary “success” event are then obtained respectively (see  Figure 2): 
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Figure 2: Examples of the identification of the probability of “failure” and “success” events 

 
From now on, by reliability A it will be briefly indicated the probability 1-PBfB associated with the “success” 
event. In particular, with reference to the performance variable Z = C-QBeB, if fBCQeB(c,qBeB) is the combined p.d.f of 
C and QBeB, for Eq.(13) it results: 

e
D

eCQf q )dcdq(c,f0)P(ZP
e∫=≤=   (17) 

In Eq.(17), D is the unsafe region, where, that is to say, the performance function Z = C-QBeB takes values Z ≤ 
0 (see Figure 3 for (C, QBeB)≥0). In other words, according to Eq.(17), the volume subtended by fBCQeB(c,qBeB) in 
correspondence with the region D gives the value PBfB. 
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Figure 3: Graphic identification of the unsafe region 

 
In conclusion, the problem of the evaluation of a roundabout reliability refers, in its general formulation, to the 
thorough probabilistic characterization of the values that the entry flows QBeB can take and to the entry 
capacity C. 
However, as it will be demonstrated in the following discussion, when this thorough characterization is not 
available, Level 1 reliability methods  can be performed on the basis of statistical estimations of the  
expected value and of the standard deviation of the random variables QBeB and C, that is to say using only one 
measurement of the random variability of the values in question (the standard deviations 

]VAR[Qs eQe
= and VAR[C]sC = , once the mean values E[QBeB] and E[C] are known). 

 



RELIABILITY EVALUATION PROCEDURES 
 
In general, the capacity C of a roundabout entry can be expressed as (BRILON W., 1988) (BRILON W, 
1991) 

)S~;τ~;Q;G~C(C d=   (18) 
where 
G~  is a set of variables representing the geometrical layout of the intersection (for instance,  approach width, 
external roundabout diameter, etc.) or its configuration (number of lanes of roundabout carriageway, number 
of roundabout entry lanes, etc.); 
QBdB is the impeding flow on the circulatory roadway that blocks the entering traffic; QBdB is a function of the 
entering flows  from the other entries; eQ~

τ~  represents psychotechnical times, relating to users’ behavior at the intersection (i.e. critical gap, follow-up 
time); 
S~  are numerical constants resulting from the model calibration, the analytical development of the 
formulation, the relations among the units of measurement of the variables adopted, etc. 
In the capacity equations available not all the above-mentioned variables, except for impeding flow, are 
present, but according to the model type, some of them can be present instead of others. 
As we shall see later, in the reliability calculation procedures, it is necessary to determine the probability law 
or some moments of the entry capacity.   
On the basis of Eq.(18), C can be expressed as a function of random variables, and therefore, the 
determination of C distribution or of the above-mentioned moments is carried out with the results of Calculus 
Probability once the above-mentioned random variables are suitably characterized probabilistically.  
The solution to some problems of this type is reported in the numerical examples given below. 
Finally, as it is easily understandable, since for a given intersection the uncertainties connected to a given 
geometrical layout can be neglected with respect to the ones associated with traffic demand or users’ 
psychotechnical features, from now on, C randomness will be exclusively considered as a function of the 
random variables of the sets and . eQ~ τ~

 
General Calculation Procedure 
Adopting for a common entry as performance variable Eq.(1), Z = C – QBeB, if C and QBeB are random variables 
that are statistically independent, so with the calculation rules for double integrals from Eq.(17) (see 
Appendix 1) for PBfB the two following equivalent expressions are obtained 

(q)dqF(q)fP

(c)]dcF[1(c)fP

CQef

QeCf

∫

∫
∞+

∞−

+∞

∞−

=

−=

  (19) 

where fBcB(⋅) and fBQeB(⋅) are the p.d.f. respectively of C and QBe ,B and FBcB(⋅) and FBQeB(⋅) are the c.d.f. respectively of 
C and QBeB. 
From Eq.(19), if C and QBeB are normally distributed, for PBfB it results (KOTTEGODA N., ROSSO R., 1997) 

)erf(0,5dte
2π
1P

β
/2t

f
2

β∫ −==
−

∞−

−   (20) 

where erf(⋅) is the error function and β is the safety index (inverse of the coefficient of variation of the 
performance function Z) 

VAR[Z]E[Z]/β =   (21) 

with E[Z] and VAR[Z]  as the expected value and the standard deviation of the performance function Z 
respectively (see Eq.(1)). 
If C is normally distributed with mean C  and variance  and QBeB is distributed, for example, exponentially 
with parameter α, for PBfB it results 
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where F(⋅) is the c.d.f. of the standardized normal distribution. 
 
 
 



A Numerical Example 
For this example, the capacity formulation of SETRA (SETRA/CSTR, 1987) is adopted.  
In Figure 4 it is schematically reported a roundabout with flow indications and geometrical features for the 
calculation of C capacity. 
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Figure 4: Geometrical layout of the roundabout 

 
We have, for all branches: 
- entry width ENT = 4.00 m 
- splitter island SEP = 6.00 m 
The circulatory roadway width is ANN = 8.00 m. 
For an entry capacity  “i” the formulation selected gives  

3.50)](ENT0.1[1)Q0.7(1330C di −⋅+⋅⋅−=   (23) 
where the impeding flow QBdiB is 

8)](ANN0.085[1Q
3
2QQ '

uicidi −⋅−⎟
⎠
⎞

⎜
⎝
⎛ +=   (24) 

with QBcB circulating traffic on the circulatory roadway at the level of the branch considered and where QBuiB is 
the exiting traffic at the level of the branch i selected.  

15
SEP15QQ ui

'
ui

−
=   (25) 

With the given values of ENT, SEP and ANN, Eqs. (23), (24) and (25) yield 
diQ0.7351397C ⋅−=   (26) 

with 
uicidi Q0.4QQ ⋅+=   (27) 

supposing that, on the basis of experimental observations, mean flow E[QBijB] and variance VAR[QBijB] of all of 
the turnings have been estimated and that these flows result in being statistically independent. 
These data are reported in the matrix O/D of Table 1. In Table 1 in each  square ij the top value is the mean, 
and the bottom one is the variance associated with the turning from branch i into branch j. Table 1 also 
shows the estimated values of the mean and  variance for the overall flows for each branch at entry QBeiB and 
at exit QBuiB. The flows are expressed in pcu/h. 

 
 
 



Table 1: Matrix O/D of the mean values E[QBijB] in (pcu/h) and variance VAR[QBijB] in (pcu/h)P
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he circulating flows QUBUciUB 

BcB are linear functions of traffic demand expressed as turning flows. For example, for 
 QB24B + QB23B + QB34B. 
erties of mean E[⋅]  and variance VAR[⋅] operators when applied to random variables 

t and with the data of Table 1, it gives   
uvp/h 350100100150]E[Q] 34 =++=+  (28) 

2
3423 (uvp/h) 450018001800900]VAR[Q]VAR[Q =++=+  (29) 

ion (cv)B1B is 
0.19267/350]1 ==   (30) 

other entries, the values of the mean and variance for the circulating flows in Table 2  

peding flows QUBUdiUB 

s  Q where QBu1B = QB21B + QB31B + QB41B. u1c1d1 Q0,4Q ⋅+=
ve-mentioned properties of the mean and variance operators and with the values of 

uvp/h 650150)300(3000,4350])E[Q]E[Q][Q 413121 =++⋅+=++  (31) 

2
413121

2

(uvp/h) 62441500)3000(6400
])VAR[Q]VAR[Q](VAR[Q0,4

=++⋅
=++⋅  (32) 

ent of variation equals to 
0.12279/650]d1 ==   (33) 

ion for the other entries, the impeding flow statistics reported in Table 2 can be 

tatistics of  circulating flows, impeding flows, and entry capacities. 
Safety index and reliability index values. 

E[QBciB] 
(uvp/h) 

E[QBdiB] 
(uvp/h) 

E[CBiB] 
(uvp/h) 

AR[QBciB] 
(uvp/h)P

2
P 

VAR[QBdi] B

(uvp/h)P

2
P 

VAR[CBi ] B

(uvp/h)P

2
P 

Average 
Capacity Reserve 

E[C]-E[QBeB] 
(uvp/h) 

βBiB 
A 

350 650 920 
4500 6244 3373 320 3.19 0.999 

550 850 772 
6300 8540 4613 222 1.90 0.971 

700 880 750 
13000 14008 7567 150 1.23 0.897 
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ow capacities CUBUiUB 

6), since the relation between CBiB and QBdiB is linear and with the above-mentioned 
Bdi Bmoments, itB  Bis obtained 



uvp/h 9206500.7351397]0.735E[Q1397]E[C d11 =⋅−=−=  (34) 
22

1 (uvp/h) 337362440.735]VAR[C =⋅=   (35) 
   (36) 0.06358/920(cv)1 ==
For the other entries, the capacity moments reported in Table 2 can be determined in the same way. 
UReliability calculation 
For entry 1, the performance function (1) ZB1B is on average equal to  

uvp/h 320600920]E[Q-]E[C]E[Z e111 =−==   
2

e111 (uvp/h)  1007367003373]VAR[Q]VAR[C]VAR[Z =+=+=  

It follows that 3.19
10073
320

]VAR[Z
]E[Zβ

1

1
1 ===  

and thus 0.499erf(3.19))erf( 1 ==β . 
With Eq.(20) reliability A for entry 1 on the basis of Eq.(15) equals to 
A = 0.5 + erf(3.19) = 0.999. 
Table 1 shows the reliability values calculated for the remaining entries to the roundabout considered. The 
present example has been carried out using the hypotheses of mutual statistical independence among 
entering flows. If this circumstance does not occur, for statistically dependent flows it must also be taken into 
account their covariance cov[(·);(·)], as shown below. 
With reference to, for example, entry 1, suppose that the elaboration of experimental data traffic shows the 
mutual statistical dependence among the turning flows QB24B; QB23B; QB34B and among QB21B; QB31B; QB41B, so that to 
have, for the covariances, the values of Table 3 (the flows QBij Bare expressed in pcu/h). 
 

Table 3: Values of the cov[(QBiB);(QBjB)] in (pcu/h)P

2
P 

 QB23B QB31B QB34B QB41B 

QB21B  3500  2000 
QB31B    1800 
QB23B   1800  
QB24B 1000  1100  

QBj
B QBi

B 

 
While E[QBc1B] remains equal to Eq.(28) the VAR[QBc1B] is, with the values of Tables 1 and 3, with respect to 
Eq.(29), thus modified: 

2
342334242324342324c1
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])Q;cov[Q]Q;cov[Q]Q;2(cov[Q]VAR[Q]VAR[Q]VAR[Q]VAR[Q

=++⋅+++=
=+++++=

 (29’) 

For the impeding flow QBd1B it is obtained, for the mean E[QBd1B], the same value yielded by Eq.(31), while for 
the calculation of VAR[QBd1B] it is necessary, together with the covariances of Table 3, to know the 
cov[(QBc1B);(QBu1B)]. 
Suppose that for cov[(QBc1B);(QBu1B)] it results, on the basis of traffic measurement treatment, 
cov[(QBc1B);(QBu1B)]=13000 (pcu/h)P

2
P. With the values of Table 1 and Table 3, it is obtained: 

2
413141213121413121u1
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=⋅⋅+⋅+=
=⋅⋅+⋅+=  (38) 

With Eq.(38) and with Eq.(31), it is obtained, on the basis of Eq.(23), for entry 1 capacity: 
uvp/h 9206500,7351397]0,735E[Q-1397]E[Q d1c1 =⋅−==  (39) 

22
d1

2
c1 (uvp/h) 14467267800,735]VAR[Q0,735]VAR[Q =⋅=⋅=  (40) 

In conclusion, with E[QBe1B]= 600 pcu/h (see Table 1) for the performance function ZB1 Bit results: 
uvp/h 320600920]E[Q-]E[C]E[Z e111 =−==   (41) 

2
111 (uvp/h) 21167670014467]VAR[Q]VAR[C]VAR[Z =+=+=  (42) 

Thus 

2.20
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320

]VAR[Z
]E[Zβ

1

1
1 ===   (43) 

and for reliability  A it results (see Eqs.(15) and (20)) 
A = 0.5 + erf(β) = 0.5 +erf (2.20) = 0.986.  (44) 
 



APPROXIMATED METHOD 
 
This procedure is exclusively based on the knowledge of the mean value and on only one measurement of 
the random variability (generally, variance or standard deviation) of the values involved: it can thus be 
considered an approximated approach to evaluate reliability compared to the criterion illustrated in the 
previous paragraph.  
Keeping in mind the meaning and the definition of mean value and variance, this method could be called the 
two-moment method. The use of this approximated method requires the introduction of a safety index β 
which can be defined using the performance function Z. This index is the number of standard deviations that 
separate the mean value Z from the value Z = 0 which – by definition – corresponds to the failure limit. 
This method is structured in this way. 
Calculate the mean and variance statistics E[Z] and VAR[Z] of the performance variable (1) 

eQCZ −=   (1) 
starting from the known homologues of QBeB and of C (E[QBeB]; VAR[QBeB]; [E[C];VAR[C]) with the relation (see 
Figure 5) 

0βsE[Z] Z =−   (45) 

index β is calculated, and it  provides the number of standard deviations VAR[Z]sZ =  of Z that separate 
the mean value E[Z] from the value Z=0, corresponding by definition to the limit that marks the failure 
condition 0).C;Q   QC0(Z ee ≠∀=↔=  
 

 
Figure 5: Reliability index β and p.d.f. of the performance function Z 

 
By introducing the normalized performance function as 

zs
E[Z]-Zξ =   (46) 

the “success” and “failure” events are, respectively, equivalent to the occurrence of the inequalities: 
- UsuccessU  

  (47) βξ −≥
- UfailureU  

  (48) βξ −<
In fact, putting in Eq.(13) a value of  yields  Z, Z ≥ 0, that is to say that C ≥ QBeB, while, substituting 

 yields Z < 0, which equals to C < QBeB. 
βξ −≥

βξ −<
If Z probability law, that is ξ, is known, each limit of β corresponds to a well-determined value of the Ufailure 
probabilityU 

  (49) )F(-β)P(ξPf β=−<=
)F(-1P-1 f β−==A   (50) 

Even though the law distribution of the  performance function Z is not known or easily determinable, β can be 
considered as a coherent reliability value. In fact, the tail of the most common probability density functions 
can be adequately approximated with an exponential function (suitably identified with two parameters A and 
b), (A>0, b>0), 

)exp(bA)F( ξ⋅⋅=ξ     se   1=<<ξ)F(   (51) 



For example, if QBeB and C are both lognormally distributed, it can be demonstrated that Eq.(51) becomes 
)exp(-4,3460)F(- β⋅=ξ   (52) 

and, thus,  
)exp(-4.3460)F(--1 β⋅⋅−=ξ= 1A   (53) 

It follows that as β increases, reliability also increases. With the most frequent f.d.p. the values of β at least 
equal to 2 always indicate high probabilities that QBeB is systematically smaller than C, that is to say that the 
entry does not become saturated. 
 
A numerical example 
Suppose one adopts as a capacity formulation the one presented in the 2000 edition of the H.C.M. (T.R.B., 
2000) on the basis of which 
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For an assigned value of QBcB it results  
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where TBcB is the critical gap (sec) and TBfB is the follow-up time (sec). 
Assume that QBcB is known without doubt and that TBcB and TBfB are instead random variables. 
Using the linearization of Eq.(54) it can be demonstrated (BENJAMIN R., CORNELL C.A.,1970) that an 
approximated evaluation of the first order of  E[C] and VAR[C] is yielded by  
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where E[TBcB]; E[TBfB]; VAR[TBcB]; VAR[TBfB]; cov[TBcB;TBfB] have the usual meaning and for kB1B and kB2B it results 
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Assume therefore, for an entry for which QBcB = 250 pcu/h, the following values of the statistics of the random 
variables TBcB and TBfB : 
E[TBcB] = 4.4 sec  VAR[TBcB] = 0.36 sec2

P  cov[TBc B; TBfB] = 0.30 secP

2 
P

E[TBfB] = 2.9 sec  VAR[TBfB] = 0.25 secP

2
P  

With these values and with C=C(TBc B,TBfB) given by Eq.(54), it is obtained for Eqs. (56), (57), (58) and (59) 
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The coefficient of variation (cv) is equal, in this case, to  
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If E[QBeB] = 450 veic/h and VAR [QBcB] = 1500 (pcu/h)P

2
P it is obtained for the statistics of the performance function 
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This value of β means high reliability values. 



When it seems right to apply to this case the approximation provided by Eq.(52), it is obtained for A, for 
example, the value (see Eq.(53)) 
A = 1-460 exp {-4.3 · 2.00} = 0.92 
 
SOME REMARKS 
 
Reliability depends, when the mean of the Capacity Reserve and/or of the Capacity Rate does not change, 
on the level of uncertainty that affects the values in question (dispersion around the mean values of the 
flows). 
The role of the dispersions centered on the mean values E[QBeB] and E[C] is evident from the observation of 
the curves PBfB = PBfB(ωBoB) in Figure 6. They can be obtained as follows. 
Expressed β as (see Eq.(21)) 
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where /E[C]VAR[C](cv)c = and ]/E[Q]VAR[Q(cv) eeQe =  are, respectively, the capacity and demand 
coefficients of variation at an entry and ωBoB= E[C]/ E[QBeB] the ratio among the means of the same ones, for 
Eq.(21) it results in 

)(cv);(cv);(PP Qecoff ω=  
Once fixed the values that form the couples ((cv)BcB; (cv)BQeB) of the table, with them, from Eq.(20), the 16 
curves PBfB =  PBfB(ωBoB) of Figure 6 can be obtained. 
Figure 6 shows that: 
- for high values of (cv)BcB, even increasing considerably ωBoB, it is not possible to keep the failure probability 

within small values; 
- for small values of (cv)Bc,B the variability of QBe Bis significant (this is instead unimportant for big values of 

(cv)BcB, that is to say with uncertain capacities). 
 

 
(cv)BQeB  (cv)BcB 0 0,1 0,2 0,3 

0,05 1 2 3 4 
0,10 5 6 7 8 
0,15 9 10 11 12 
0,20 13 14 15 16 
Figure 6: PBfB =  PBfB(ωBoB) for the couples of values ((cv)BcB; (cv)BQeB) 



CONCLUSION 
 
This paper has highlighted the concept that the indexes normally used to design roundabouts (Capacity 
Reserve or Capacity Rate at each branch) do not always ensure by themselves an adequate performance of 
the intersection. 
This occurs because the flows of the various branches (and the capacities that depend on them) are random 
variables. They, in general, are non-statistically independent. Therefore to evaluate Reliability, that is to say 
the probability that the system does not fail (in the specific case, that demand does not exceed the single 
branch capacities) it is necessary to characterize the flows and their related values by means of their 
probability functions or when these laws are not available, by synthetic indexes such as means, variances, 
and covariances. 
This paper presents a general criteria for the evaluation of Reliability in each branch based on the study of 
the performance function Z (Z = C-QBeB o Z = C/QBeB) and it provides the analytical relations in the particular 
case in which capacity and demand (and thus also Z) are normally distributed with means and variances 
known. 
An approximated criteria is also provided to be used in the cases where the probability laws of capacities and 
demands, and thus of performance function Z, are unknown or difficult to determine. 
The numerical examples developed to illustrate the method (and the many others that have not been 
reported for the sake of brevity) show, as it was logical to expect, that the two only indexes normally used 
(Reserve of Capacity and/or Rate of Capacity) are not sufficient by themselves to ensure that the system 
does not fail. 
Reliability depends, when the mean of the Capacity Reserve and/or of the Capacity Rate does not change, 
on the level of uncertainty that affects the values in question (dispersion around the mean values of the 
flows). 
Regarding the threshold value to attribute to Reliability, it must be stated that it cannot be fixed in general 
terms, but it should be identified on a case-to case basis in relation to the damage (excessive mean and 
global waiting times, safety decrease, repercussions on the surrounding network) caused by the system 
failure.  
We also wish to underline that, as far as we know, the methods developed in this paper for the study of 
functional performances of roundabouts have never been presented by other authors so far. This is an 
innovative element about roundabouts since it makes it possible to quantify the uncertainties relating to their 
performance estimations. Thus, the results presented in this paper can help to design roundabouts in a 
better and more rational way. 
Finally, even others performance indexes for roundabouts, as simple and total capacity, can be expressed in 
a probabilistic way. The authors of this paper are deeply interested in this theme and are carrying out new 
research on these topics. 
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APPENDIX 1 
 
Figure 7 shows the tails of the p.d.f. of demand QBeB and of capacity C (generic p.d.f.). 
The probability that demand QBeB is bigger than an assigned value c of Capacity C is equal to 
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The probability that capacity C falls in the neighborhood of c is equal to  
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which is Eq.(19). 
Dually (see Figure 8) 
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which is Eq.(19). 
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Figure 7:  Tails of p.d.f. of demand QBeB and of capacity C (generic p.d.f.) 
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Figure 8:  Tails of p.d.f. of demand QBeB and of capacity C (generic p.d.f.) 
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